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Abstract: Max-Simply is a high-level programming framework for modelling and
solving weighted CSP. Max-Simply can also deal with meta-constraints, that is, con-
straints on constraints. The technology currently used to solve the generated prob-
lem instances is SMT. In this paper we present a variant of Max-Simply which is
able to generate not only SMT instances but also pseudo-Boolean instances for cer-
tain modellings. Since there are problems that are more naturally encoded using
pseudo-Boolean variables, the possibility of generating pseudo-Boolean instances
can result in a more efficient and natural fit in some situations. We illustrate the
expressiveness of the Max-Simply language by modelling some problems, and pro-
vide promising performance results on the corresponding generated pseudo-Boolean
instances using state-of-the-art pseudo-Boolean solvers.
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1 Introduction

One of the challenges in constraint programming is to develop systems allowing the user to easily
specify the problem in a high-level language and, at the same time, being able to efficiently solve
it. Various approaches exist for solving constraint satisfaction problems (CSP) specified in a
high-level language, such as ad hoc algorithms for some constructs, or the translation to lower
level languages. Some years ago, translation was seen as a theoretical possibility but not really
feasible. But there have been impressive developments in this area, making this approach not
only feasible, but also competitive.

Following this direction, some high-level, solver-independent constraint modelling languages
have been developed, such as MiniZinc [NSB+07], ESSENCE [FHJ+08] and Simply [BPSV09].
Those languages let the user express most CSPs easily and intuitively. There exist tools for trans-
lating from those high-level languages to lower level ones, some of them permitting a great deal
of flexibility to the user. For example, the MiniZinc system lets the user specify which con-
straints wants to leave untranslated, so that an underlying solver or an ad hoc algorithm can deal
with them in a better and more efficient way.
Simply was developed as a declarative programming system for easy modelling and solv-

ing of CSPs. Essentially, the system translates CSP instances (written in its own language) into
satisfiability modulo theories (SMT) instances, which are then fed into an SMT solver. SMT
instances generalize Boolean formulas by allowing the use of predicates with predefined in-
terpretations from background theories such as, e.g., linear integer arithmetic. For example, a

M.M. Gallardo, M. Villaret, L. Iribarne (Eds.): PROLE’2012, pp. 141-155, ISBN:978-84-15487-27-2. 
Jornadas SISTEDES’2012, Almería 17-19 sept. 2012, Universidad de Almería.



formula can contain clauses like p∨q∨(x+2 ! y)∨(x > y+z), where p and q are Boolean vari-
ables and x, y and z are integer variables. Max-Simply [ABP+11] is an extension to Simply,
allowing to model and solve weighted CSPs.

There exist many problems that are easily or naturally encoded using pseudo-Boolean vari-
ables, i.e., integers with a {0,1} domain. For those kind of problems, very efficient pseudo-
Boolean solvers exist. Here we propose a variant of Max-Simply, where we add the possibility
to translate most of its high-level language constructs into low-level pseudo-Boolean constructs,
allowing the user to solve his modelled weighted CSP problems using an even wider spectrum
of solvers and technologies. This extension also provides support for some constraints on con-
straints, so called meta-constraints.

The rest of the paper is structured as follows. In Section 2, weighted CSP and pseudo-Boolean
constraints are presented, including the pseudo-Boolean optimization problem and the weighted
Boolean optimization problem. In Section 3, the language of Simply is briefly described, em-
pathizing its features and how the translation to pseudo-Boolean constraints works. In Section 4,
results of the experiments with two different problems are shown and analyzed. In Section 5,
conclusions are drawn from the results so far and some future work is proposed.

2 Preliminaries

2.1 Weighted CSP

A constraint satisfaction problem (CSP) instance is defined as a triple ⟨X ,D,C⟩, where X is a set
of variables, D is a set of domains containing the values the variables may take, and C is a set
of constraints. Each constraint is defined as a relation over a subset of variables. A constraint or
relation may be represented intensionally: in terms of an expression that defines the relationship
that must hold amongst the assignments to the variables it constrains, or it may be represented
extensionally: as explicitly enumerating the allowed assignments or the disallowed assignments.
An assignment for a CSP instance ⟨X ,D,C⟩ is a mapping that assigns to every variable in X an
element that belongs to its domain, and a solution is an assignment that satisfies the constraints.

A weighted CSP (WCSP) is defined as a CSP, where each constraint has attached a weight, or
falsification cost (typically a positive number), expressing the penalty for violating the constraint.
An optimal solution to a WCSP instance is a complete assignment in which the sum of the
weights of the violated constraints is minimal. We call hard those constraints whose associated
cost is infinity, soft otherwise. For further formal definitions the reader can refer to [LS04].

2.2 Pseudo-Boolean constraints

A pseudo-Boolean constraint (PBC for short) is an inequality on a linear combination of 0-1
(Boolean) variables. PBCs take the form:

a1x1 + a2x2 + · · · + anxn ⊕ r (1)

where a1, . . . ,an and r are integer constants, x1, . . . ,xn are Boolean variables, and ⊕ is a relational
operator in {<,>,!,",=}.
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So a system of PBCs is a system of linear inequalities of 0-1 variables, a paradigm extensively
studied in Operations Research. PBCs lie on the border between satisfiability testing, constraint
programming, and integer programming. With their expressivity, PBCs can be used to compactly
describe many discrete electronic design automation problems, network layout problems, and
much more.

The yearly pseudo-Boolean competition [RM12] works as a place to compare the efficiency
of the current pseudo-Boolean solvers. The competition is divided in two branches, one for
pseudo-Boolean optimization and one for weighted Boolean optimization. Each branch has its
own file format. For solving pseudo-Boolean optimization problems, there are three big families
of approaches: integer programming, pseudo-Boolean resolution and translation into MaxSAT.
For further information, the reader can refer to [RM09].

2.2.1 Pseudo-Boolean optimization

Pseudo-Boolean optimization (PBO) is a natural extension of the Boolean satisfiability problem
(SAT). A PBO instance is a set of PBC as defined in Equation 1, plus a linear objective function
taking a similar form:

min : a1x1 + a2x2 + ... + anxn (2)

where a1, ...,an are integer coefficients and x1, ...,xn are Boolean variables. The objective is to
find a suitable assignment to the problem variables such that all the constraints are satisfied and
the value of the objective function is minimized.

The first approaches into solving PBO instances were the generalization of the most effective
techniques used in SAT solving, such as conflict-based learning, and conflict-directed backtrack-
ing [MM02, CK05]. The basic idea is, when a solution is found, to add a constraint such as only
a lower value solution can be accepted. The solver finishes when a lower value solution cannot
be found, thus proving its optimality.

Another common approach is the use a branch and bound algorithm, where the lower bounding
procedure tries to estimate the value of the objective function. Direct translations from PBC to
SAT have also been used effectively, especially in problem sets where the translation does not
grow much larger than the original encoding.

The standard file format used in the pseudo-Boolean competition [RM12] is opb. This is a
simple format, which is accepted by all the solvers. As a reference, a trivial example of this
format can be seen in Figure 1. The first line of the file defines the number of variables and
constraints in the problem instance.

* #variable= 2 #constraint= 1
****************************************
min: +1 x1 +1 x2;
+1 x1 +6 x2 >= -1;

Figure 1: opb example.
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2.2.2 Weighted Boolean optimization

Weighted Boolean optimization (WBO) is another way of expressing a pseudo-Boolean opti-
mization problem. This format aggregates and extends PBO and MaxSAT. It is composed of two
types of constraints: hard and soft. Each soft constraint has an integer associated to it, represent-
ing its falsification cost. Given a WBO instance, an optimal solution is to find an assignment to
the variables that satisfies all the hard constraints and minimizes the total cost of the unsatisfied
soft constraints. Generalizations of MaxSAT and PBO algorithms are the first approaches that
have been proposed to solve this kind of problems [MMP09].

The standard file format used in the pseudo-Boolean competition [RM12] for WBO instances
is wbo. This is a simple format, accepted by most of the solvers. As a reference, a trivial
example of this format can be seen in Figure 2. The first line of the file defines the number of
variables and constraints, the number of soft constraints, the minimum and maximum cost of a
single constraint and the total sum. The second line is defined as the sum of the costs of all soft
constraints plus one.

* #variable= 3 #constraint= 4 #soft= 2 mincost= 2 maxcost= 3 sumcost= 5
soft: 6
+1 x1 +1 x2 +1 x3 >= 2;
+2 x1 +1 x2 +1 x3 >= 2;
[2] +1 x1 +1 x2 >= 1;
[3] +1 x1 +1 x3 >= 1;

Figure 2: wbo example.

3 Simply: extensions and variants

Simply1 [BPSV09] is a programming system with a declarative language (also called Simply)
for easy modelling and solving of CSPs, which uses an SMT solver as its core solving engine.
Essentially, the system consists of a compiler from the Simply language into SMT, and a re-
covery module for translating the output generated by the SMT solver to the original problem
format. Currently, Simply is integrated with the state-of-the-art SMT solver Yices [DM06],
using its built-in API. However, it can be easily adapted to work with other SMT solvers, either
using external files or any other API. Since most SMT solvers can only deal with decision prob-
lems, in the case of optimization Simply repeatedly calls the decision procedure performing
binary search on the value of the objective function (treated as a constraint).

Recently, Simply has been extended to deal with weighted CSPs as well as with meta-
constraints, in a new system called Max-Simply [ABP+11]. In this extension, the user can
choose from the command line whether to solve the weighted CSP instance at hand (i) through
successive calls to the decision procedure doing binary search on the corresponding objective
function, or (ii) reformulating it into a weighted SMT instance and directly solving it with Yices
(which has built-in support for weighted SMT), or (iii) applying the WPM1 algorithm [ABL09]
on the generated weighted SMT instance.
1 The tool is available from http://ima.udg.edu/recerca/LAP/simply/
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In this paper we present a variant of Max-Simply which uses a pseudo-Boolean solver (PB
solver for short) as its core solving engine. Although the pseudo-Boolean language is less ex-
pressive than that of SMT, solving CSP instances with a PB solver greatly simplifies the solving
approach for optimization problems, due to the fact that PB solvers directly support optimiza-
tion of objective functions. In the case of dealing with weighted CSPs, the architecture of the
system can remain exactly the same as in Max-Simply, because most PB solvers support both
optimization functions and weighted expressions. Consequently, the weighted instances can be
directly reformulated either into PBO or WBO.

3.1 The language

The language of Simply is similar to other high-level modelling languages such as those of
ESSENCE and MiniZinc. As it is usual, the model and the data of the problem instance can be
stored in two different files. The decision variables in Simply can be finite domain integer
variables and Boolean variables. For the pseudo-Boolean translation, only integer variables with
the binary domain {0,1} are currently considered.

Problems can be modelled by posting basic constraints, and also global and meta-constraints,
that are decomposed into basic ones during the translation. The posting can be made either
directly or by using generators such as Forall and Exists, and the If-Then-Else fil-
ter. The language also has the declarative facility of list comprehensions, allowing the user to
generate parametrized lists of elements or constraints.

The basic constraints consist of arithmetic relational expressions built up with the usual oper-
ators ≤, ≥, <, > and = (only linear expressions are supported). These can be combined with
other Boolean expressions using the Boolean operators Or, And, Xor, Iff and Implies, as
for example in b Implies 3*a[1]+4*a[2]+5*a[3] ≤ 8.

The most representative global constraints supported by Simply are the following:

• Sum(l,n). The sum of the elements in list l is n.

• AtLeast(l,v,n). The number of occurrences of value v in list l is at least n.

• AtMost(l,v,n). The number of occurrences of value v in list l is at most n.

In all the constraints, the elements of the lists, as well as the values v and n, must be linear
integer expressions. In the present variant with pseudo-Boolean variables, the elements of the
lists are restricted to expressions of the form a ∗ x, where a is an integer constant and x is a
pseudo-Boolean variable. Moreover, the last two global constraints have been modified in the
following way (with the second argument removed):

• AtLeast([a1 ∗ x1, . . . ,an ∗ xn],n) if and only if ∑n
i=1 ai ∗ xi ≥ n.

• AtMost([a1 ∗ x1, . . . ,an ∗ xn],n) if and only if ∑n
i=1 ai ∗ xi ≤ n.

Example 1 If we want to constraint the sum of the elements in a list of three elements to be
equal to 10, we can post the basic constraint list[1] + list[2] + list[3] = 10;
However, if we don’t know, a priori, the length of the list because it is an integer constant value
n of the instance data, we can post the following global constraint, where we use a list compre-
hension to create a list of unknown length: Sum([ list[i] | i in [1..n] ], 10);
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The generator
Forall(id in list) {constraints}

posts a conjunction of the generated inner constraints (either basic or global), while the generator

Exists(id in list) {constraints}

posts a disjunction. The language also has the filter

If(formula) Then {constraints1} Else {constraints2};

where the condition formula is evaluated in compilation time. If it evaluates to true then the
constraints1 are posted; otherwise the constraints2 are posted.

Example 2 The following code with two generators and one filter

% Every element of the list must be between 0 and 10
Forall(i in [1..n]) {
list[i] >= 0; list[i] =< 10;

};
% One of the elements ocurring in even positions
% of the list must be greater than or equal to 7
Exists(i in [1..n]) {
If (n Mod 2 == 0) Then {
list[i] >= 7;

};
};

results into the following constraints, provided that the value of n is known to be 5 at compile
time:

list[1] >= 0; list[1] =< 10;
list[2] >= 0; list[2] =< 10;
list[3] >= 0; list[3] =< 10;
list[4] >= 0; list[4] =< 10;
list[5] >= 0; list[5] =< 10;
(list[2] >= 7 Or list[4] >= 7);

The language also allows the use of list comprehensions as a Forall generator, i.e., list
comprehensions can be used to post basic constraints.

Example 3 shows a Simply model of a toy instance of the Nurse scheduling problem (NSP).

Example 3 Consider a simple instance of the NSP (details on the NSP are given in Section 4.3)
with two shifts per day and two available nurses. Each shift must be covered with exactly one
nurse. We also want to satisfy the preferences of the nurses. Say nurses 1 and 2 want to work
both days on shift 1. This particular instance can be modelled with Simply as follows:

Problem:nsp
Data

int nurses = 2; int days = 2; int shifts = 2;
Domains

Dom pseudo = [0..1];
Variables

IntVar nd[nurses, days, shifts] :: pseudo;
Constraints

% Exactly one nurse per day and shift
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Forall(d in [1..days], st in [1..shifts]) {
Sum([nd[n, d, st] | n in [1..nurses]], 1); };

% Exactly one shift per nurse and day
Forall(d in [1..days], n in [1..nurses]) {

Sum([nd[n, d, st] | st in [1..shifts]], 1); };

% Preferences for nurse 1
nd[1,1,1] = 1; % work day 1 shift 1
nd[1,2,1] = 1; % work day 2 shift 1

% Preferences for nurse 2
nd[2,1,1] = 1; % work day 1 shift 1
nd[2,2,1] = 1; % work day 2 shift 1

We can identify four sections in the Simply model: data, domains, variables and constraints.
The data section allows us to define a particular instance of the problem. In the variables section
we declare the decision variables of the problem, in this case a tridimensional array of pseudo-
Boolean variables nd, where the size of the first dimension corresponds to the number of nurses,
the size of the second dimension to the number of days and the size of the third dimension to
the number of shifts. This array states whether each nurse works in each shift of each day. In
the constraints section, we first introduce the cover constraints: for every day, we have to en-
sure that every shift is covered by the required number of nurses (one in this case). To post this
constraint we generate the list of nurses working each day d and shift st with a list compre-
hension [nd[n, d, st] | n in [1..nurses]], and we use the global constraint Sum
to require the number of nurses working that day and shift to be exactly one. Similarly we post
a second constraint for the number of shifts worked by a nurse in one day. Finally, we add the
preference constraints of each nurse for each day, specifying which shift they prefer. As we can
see this toy instance is unsatisfiable, since all nurses want to work the same shift.

3.1.1 Soft constraints and meta-constraints

As we have explained at the beginning of this section, Max-Simply can deal with weighted
CSPs, so the language implements soft constraints. For instance, in order to relax the nurse
preference constraints of the previous example we only need to turn those hard constraints into
soft constraints, by adding their weights as follows:

#A: nd[1,1,1] = 1 @{1}; #B: nd[1,2,1] = 1 @{1};
#C: nd[2,1,1] = 1 @{1}; #D: nd[2,2,1] = 1 @{1};

where the @{1} are the corresponding weights, and where A, B, C and D are labels that may be
used later on to refer to the corresponding soft constraints (for example, in a meta-constraint).

We can go further at the specification level by allowing the user to express more complex
preferences. In [PRB00], a set of constraints on soft constraints, called meta-constraints, is
introduced. Meta-constraints can be very helpful in the modelling process, as they allow the
user to abstract to a higher level. With them we can limit the degree of violation of soft con-
straints, state certain homogeneity in the amount of violation of disjoint groups of constraints,
etc. In [ABP+11] all these meta-constraints are implemented by translation into SMT. Unfortu-
nately, with pseudo-Booleans this is much harder since we do not have integer decision variables.

An extension to Simply for solving Weighted Constraint Satisfaction Problems with Pseudo-Boolean Constraints 147



Therefore, in the present work we have only implemented two meta-constraints, which allow to
bound the amount of violation (i.e., the aggregated cost of the unsatisfied constraints) of a list of
soft constraints:

• maxCost(ll,n) / minCost(ll,n). Constraints the maximum/minimum aggregated
cost of the unsatisfied constraints of each list of soft constraints in ll to be n.

We remark that ll is a list of lists of soft constraint labels. For instance, following the previous
example we could constraint the amount of violation of nurse preferences to be 1. Notice that,
this way, we would obtain more fair solutions.

MetaConstraints
maxCost([[A,B],[C,D]],1);

3.2 Translation into pseudo-Booleans

For obtaining a pseudo-Boolean instance from a Simplymodel, the first two steps of the transla-
tion are the same as for generating an SMT instance: first, the meta-constraints are reformulated
into a conjunction of constraints; next, the generators and the list comprehensions are unfolded,
so that a conjunction of basic or global of constraints is obtained.

The first difference is with respect to linear arithmetic expressions, which are straightforwardly
reformulated into pseudo-Boolean constraints. The translation of Boolean combinations (Or,
Implies, . . . ) of basic constraints requires reification. This technique is also required to deal
with weights when translating to the pbo format, and is described in the next subsection.

The translation of the Sum, AtLeast and AtMost global constraints is straightforward from
its definition in Subsection 3.1. The translation of the meta-constraint maxCost([l1, . . . , lm],n)
results into a conjunction of AtMost global constraints, one for each list li of soft constraint
labels. Each labelled soft constraint is reified into an auxiliary pseudo-Boolean variable, which
is multiplied by the cost of the soft constraint, and those are the arguments given to the AtMost
global constraints. The minCostmeta-constraint is translated similarly but using the AtLeast
global constraint. At the current stage of development, meta-constraints are still not implemented
for the wbo format.

3.3 Reification

As explained in Section 2, pseudo-Boolean constraints are inequalities on linear combinations
of 0-1 variables. Several types of constraints cannot be directly translated to pseudo-Boolean
form, for instance the ones containing logical operators (such as Or, Implies, . . . ). To be
able to express these kind of constraints we use reification, which means to reflect the constraint
satisfaction into a 0-1 variable. Then, e.g., a Or b can be translated into ia + ib ≥ 1, where ia
and ib are the 0-1 variables corresponding to the Boolean variables a and b, respectively.

In addition, since soft constraints are not directly supported by the pbo format we use reifi-
cation to manage their violation costs. To do that, each soft constraint is reified and a reverse
reification variable is created using the equation: reif var+ reif varrev = 1 (note that in this re-
verse reification variable we are reflecting the falsification of the constraint). Then the reverse
reification variable multiplied by the violation cost is added to the minimization function.
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Reification is done according to the BigM method, as described in [Wil99]. In Example 4 we
give an example.

Example 4 Assume we want to reify a (possibly labelled) constraint ∑ j a jx j ! b, being δ the
corresponding reification variable. The relation between the constraint and δ can be modelled as
follows:

• δ = 1 → ∑ j a jx j ! b is translated into ∑ j a jx j +Mδ ! M+b, where M is an upper bound
for the expression ∑ j a jx j −b.

• δ = 0 → ∑ j a jx j ! b, i.e., δ = 0 → ∑ j a jx j > b. Since none of the two standard pseudo-
Boolean formats supports the > operator, we need to rewrite the expression ∑ j a jx j > b
as ∑ j a jx j " b+ ε , where ε can be taken as 1 as we are dealing with integers. The final
resulting constraint is then ∑ j a jx j − (m− ε)δ " b+ ε , where m is a lower bound for the
expression ∑ j a jx j −b.

In the case that the reified constraint is soft, since pseudo-Boolean problems are minimization
problems, it can be seen that the implication with δ = 0 is unnecessary. However, our experi-
mental results have shown it beneficial.

4 Experiments

Two WCSP have been chosen for testing the performance of the new system along its develop-
ment: Soft BACP, a variant of the Balanced Academic Curriculum Problem, and the well known
Nurse Scheduling Problem. We have chosen this two problems since they can be naturally en-
coded in a suitable pseudo-Boolean form. All experiments have been performed on a 2.8GHz
12GB Intel Core i7 system running GNU/Linux with kernel 2.6.35-32 (64 bits).

4.1 Solvers

The solvers used in the experiments, classified by families, are the following.

• Integer Programming based.

SCIP (scip-2.1.1.linux.x86) - A mixed integer programming solver.

• Pseudo-Boolean resolution based.

Sat4j (sat4j-pb-v20110329) - A Boolean satisfaction and optimization library for Java.
With PBC, it uses a cutting planes approach or pseudo-Boolean resolution [Sat12].

Clasp (clasp-2.0.6-st-x86-linux) - A conflict-driven answer set solver.

Bsolo (beta version 3.2 - 23/05/2010) - A solver with cardinality constraint learning.

• Translation to MaxSAT or SMT based.

PWBO (pwbo2.0) - Also known as the parallel wbo solver. Since the other considered
solvers are single-threaded, we have not used its parallel feature. When pbwo is run with
one thread it uses a unsat-based core algorithm [MML11].
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x c1 c2 c3
p1 1 0 0
p2 0 1 0
p3 0 0 1

x aux c1 c2 c3
p1 0 0 0
p2 1 0 0
p3 1 1 0

Table 1: SBACP prerequisites example.

PB/CT (pbct0.1.2) - Translates the problem into SAT modulo the theory of costs and uses
the Open-SMT solver.

4.2 Soft BACP

The first problem we have considered is a relaxed version of the Balanced Academic Curriculum
Problem (BACP, prob030 at http://www.csplib.org) where the prerequisite constraints are turned
into soft constraints. Note that in this case it is possible to violate a prerequisite constraint
between two courses but then, in order to reduce the pedagogic impact of the violation, we
introduce a new hard constraint, the corequisite constraint, enforcing both courses to be assigned
to the same period. We call this problem the Soft Balanced Academic Curriculum Problem
(SBACP). The goal of the SBACP is to assign a period to every course, minimizing the total
amount of prerequisite constraint violations, and satisfying the constraints on the number of
credits and courses per period, and the corequisite constraints.

In Figure 3, we propose a modelling of the SBACP using Max-Simply. In order to ob-
tain instances of the SBACP, we have over-constrained the BACP instances from the MiniZ-
inc [NSB+07] repository, by reducing to four the number of periods, and proportionally adapting
the bounds on the workload and number of courses of each period. With this reduction on the
number of periods, we have been able to turn into unsatisfiable all these instances, hence there
are no solutions with zero cost. In the model, prerequisites[i,1] denotes a course which
is a prerequisite of the course denoted by prerequisites[i,2] for each i.2

In Table 1, we give a small example to illustrate the meaning of the two matrices of variables
x and x aux used in the model. We consider an instance with three courses and three periods.
Matrix x shows in what period a course is made. Matrix x aux shows when a course is already
done, that is, it is filled with ones for the periods following the one in which the course is
done; this also can be seen as the accumulated version of matrix x. This duality lets expressing
prerequisites easily. Note that the first period row in matrix x aux always contains zeros.

In Figure 4, we show how with the maxCost meta-constraint we can restrict the violations of
prerequisites for each course to a number n. Note that, previously, we must associate the label
pre[i] to the prerequisite constraints.

In Table 2, we show the performance results for the SBACP. We have tested the pseudo-
Boolean version of Max-Simply with the different back-ends described in Section 4.1, along
with the SMT version of Max-Simply using Yices, which is able to solve weighted SMT
instances. The first group of rows reflect the execution times without the maxCost meta-
constraint, while the second and third groups show the execution times with the meta-constraints
maxCost([...],1) and maxCost([...],2), respectively. Although not shown in the
2 It is worth noting that in some constraints the ≥ operator could be replaced by the = operator, but using ≥ results
in a simpler formula when reifying; we have observed that this speeds up execution.
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Problem:sbacp
Data
int n_courses; int n_periods; int n_prerequisites;
int load_per_period_lb; int load_per_period_ub;
int courses_per_period_lb; int courses_per_period_ub;
int loads[n_courses]; int prerequisites[n_prerequisites, 2];

Domains
Dom pseudo = [0..1];

Variables
IntVar x[n_periods, n_courses]::pseudo;
IntVar x_aux[n_periods, n_courses]::pseudo;

Constraints
% each course is done only once
Forall(c in [1..n_courses]) { Sum([x[p,c] | p in [1..n_periods]], 1); };

Forall(p in [1..n_periods]) {
% for each period the number of courses is within bounds
AtLeast([x[p,c] | c in [1..n_courses]], courses_per_period_lb);
AtMost ([x[p,c] | c in [1..n_courses]], courses_per_period_ub);

% for each period the course load is within bounds
AtLeast([ loads[c] * x[p,c] | c in [1..n_courses]], load_per_period_lb);
AtMost ([ loads[c] * x[p,c] | c in [1..n_courses]], load_per_period_ub); };

% Prerequisites and Corequisites
% if course c is done previously to period p then x_aux[p,c] = 1
Forall(c in [1..n_courses]) {
Forall(p in [1..n_periods]) {
Sum([x[p2,c] | p2 in [1..p-1]], x_aux[p,c]); }; };

% a course being a (soft) prerequisite of another cannot be done after the other
Forall(i in [1..n_prerequisites]) {
Forall(p in [1..n_periods-1]) {
x_aux[p+1, prerequisites[i,1]] >= x[p, prerequisites[i,2]]; }; };

% prerequisite violation has cost 1
Forall(i in [1..n_prerequisites]) {
Forall(p in [1..n_periods]) {
(x_aux[p, prerequisites[i,1]] >= x[p, prerequisites[i,2]])@ {1}; };

};

Figure 3: Max-Simply model for the SBACP.

...
% prerequisite violation has cost 1
Forall(i in [1..n_prerequisites]) {
#pre[i]: Forall(p in [1..n_periods]) {

(x_aux[p, prerequisites[i,1]] >= x[p, prerequisites[i,2]])@ {1}; }; };

MetaConstraints
maxCost([ [ pre[np] | np in [1..n_prerequisites], prerequisites[np,2] = c ]
| c in [1..n_courses] ], n);

Figure 4: Meta-constraint for the SBACP problem.
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Max-Simply (PB) Max-Simply (SMT)
pwbo Sat4j clasp bsolo PB/CT SCIP YicesPBO WBO

w
ith

ou
t Total 31.49 48.19 44.48 23.12 70.86 53.80 33.25 125.96

Mean 1.50 2.41 1.59 0.83 2.53 2.15 1.19 4.50
Median 0.05 0.04 0.99 0.32 0.91 1.14 1.10 1.61

# t.o. 7 8 0 0 0 3 0 0

m
ax

C
1 Total 5.37 * 14.37 0.64 0.85 8.00 6.60 8.29

Mean 0.19 * 0.51 0.02 0.03 0.29 0.24 0.30
Median 0.04 * 0.50 0.02 0.02 0.23 0.16 0.28

# t.o. 0 * 0 0 0 0 0 0

m
ax

C
2 Total 88.84 * 35.05 9.21 19.27 56.72 28.34 47.34

Mean 6.35 * 1.25 0.33 0.69 2.03 1.01 1.69
Median 0.07 * 0.98 0.29 0.35 1.39 0.72 1.24

# t.o. 14 * 0 0 0 0 0 0

Table 2: SBACP solving times with a timeout of 60s. *: for now, meta-constrains are only
available for the pbo format.

table, it is worth noting that in the case of using the constraint maxCost([...],1), the
problem becomes quite more constrained, resulting into 14 unsatisfiable instances out of the 28
instances. However, 9 of the 14 solutions of the remaining instances are improved in terms of
fairness, since we have reduced the difference between the less violated course and the most
violated course. Despite the fairness improvement, the mean cost of the solutions is penalized
with an increment of 2.56 points. In the case of maxCost([...],2), the problem becomes
only slightly more constrained, transforming only one of the 28 instances in unsatisfiable. In this
case, the number of improved instances, in terms of fairness, is only 2, with an increment in the
mean cost of 1 point in the first case and of 2 points in the second case.

4.3 Nurse Scheduling Problem

The Nurse Scheduling Problem (NSP) is a classical constraint programming problem [WHFP95].
Each nurse has his/her preferences on which shifts wants to work. Conventionally a nurse can
work in three shifts: day shift, night shift and late night shift. There is a required minimum of
personnel for each shift (the shift cover). The problem is described as finding a schedule that
both respects the hard constraints and maximizes the nurse satisfaction by fulfilling their wishes.
In Figure 5 we propose a modelling of the NSP using Max-Simply, where we have the shift
covers and the number of working days as hard constraints, and the nurse preferences as soft
constraints. Notice that here, contrarily to the case of the SBACP, we have constraints with
parametrized weights.

We have taken the instances from the NSPLib. The NSPLib is a repository of thousands of
NSP instances, grouped in different sets and generated using different complexity indicators:
size of the problem (number of nurses, days or shift types), shifts coverage (distributions over
the number of needed nurses) and nurse preferences (distributions of the preferences over the
shifts and days). Details can be found in [VM07]. In order to reduce the number of instances
to work with, we have focused on a particular set: the N25 set, which contains 7920 instances.
The N25 set has the following settings: 25 nurses, 7 days, 4 shift types (where the 4th is the free
shift), a certain number of nurses required for every shift of each day and a value between 1 and 4
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Max-Simply (PB) Max-Simply (SMT)
pwbo SCIP YicesPBO WBO

# solved 5095 5064 7290 4088
# t.o. 2195 2226 0 3202
Mean 1.63 1.77 0.10 4.49

Median 0.38 0.68 0.09 1.52

Table 3: Results on the NSP with soft constraints on nurse preferences.

(from most desirable to less desirable) for each nurse, shift and day. The nurses are required to
work exactly 5 days.

Problem:nsp
Data
int n_nurses; int n_days; int n_shift_types; int min_turns; int max_turns;
int covers[n_days, n_shift_types]; int prefs[n_nurses, n_days, n_shift_types];

Domains
Dom pseudo = [0..1];

Variables
IntVar x[n_nurses, n_days, n_shift_types]::pseudo;

Constraints
% each nurse can only work one shift per day
Forall(n in [1..n_nurses], d in [1..n_days]) {
Sum([x[n,d,s] | s in [1..n_shift_types]], 1); };

% minimum covers
Forall(d in [1..n_days], s in [1..n_shift_types-1]) {
AtLeast([x[n,d,s] | n in [1..n_nurses]], covers[d,s]); };

% the number of free days is within bounds
Forall(n in [1..n_nurses]) {
If (min_turns = max_turns) Then {
Sum([x[n,d,n_shift_types] | d in [1..n_days]], n_days - min_turns);

} Else {
AtLeast([x[n,d,n_shift_types] | d in [1..n_days]], n_days - max_turns);
AtMost ([x[n,d,n_shift_types] | d in [1..n_days]], n_days - min_turns); }; };

% penalize each failed preference
Forall(n in [1..n_nurses], d in [1..n_days], s in [1..n_shift_types]) {
(x[n,d,s] = 0) @ {prefs[n,d,s]}; };

Figure 5: Max-Simply model for the NSP.

Table 3 shows the summarized results for all the 7290 instances of the N25 set of the NSP. The
solvers shown are the pseudo-Boolean version of Max-Simply with pwbo2.0 and SCIP, along
with the SMT version of Max-Simply with Yices, as the rest of solvers have not been able to
solve any instance within the time limit of 60 seconds. In these executions, SCIP excels, being
able to solve all instances with a mean time which is an order of magnitude lower than the one
of the second fastest solver.
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5 Conclusions and future work

We have presented a work in progress variant of Max-Simply that takes advantage of the
latest developments and improvements in the pseudo-Boolean solvers, giving the user a greater
range of options when solving its constraint problems. Experiments presented here have shown
that the pseudo-Boolean approximation can sometimes outperform SMT approximations. Even
inside the pseudo-Boolean solvers ecosystem, depending on the solving strategies the results
can vary greatly. As problems are easily encoded with a high-level language, the new system
can also be seen as a tool to generate pseudo-Boolean benchmarks. It can allow developers and
researchers to compare their different solvers and approaches. As for the future work, there are
many interesting paths to follow:

• In problems where most decision variables are pseudo-Boolean and only a few are integer,
it would be interesting to allow Simply to encode those integer variables using pseudo-
Boolean variables. To this purpose, we should study the efficiency of different encodings.

• At the moment there are two meta-constraints implemented: minCost and maxCost.
New meta-constraints should be introduced, enriching the language. This could be easier
if integer variables were allowed.

• Another more ambitious point of interest should be developing and integrating a pseudo-
Boolean theory solver in an SMT solver, in order to take advantage of both a DPLL search
algorithm and specialized algorithms for the pseudo-Booleans.

• For now, the code generation phase is a bit slow, as no premature optimizations were made
during the development phase of the tool. Now that we have obtained some promising
results, code generation speed can and should be improved.

Acknowledgements: We thank Josep Suy for his helpful comments and suggestions.
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[ABL09] C. Ansótegui, M. Bonet, J. Levy. Solving (Weighted) Partial MaxSAT through Sat-
isfiability Testing. In SAT 2009. LNCS 5584, pp. 427–440. Springer, 2009.
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