
SIMPLY: a Compiler from a CSP Modeling
Language to the SMT-LIB Format?

Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret

Departament d’Informàtica i Matemàtica Aplicada
Universitat de Girona
E-17071 Girona, Spain

{mbofill,mpalahi,suy,villaret}@ima.udg.edu

Abstract. In this paper we introduce Simply, a compiler from a declar-
ative language for CSP modeling to the standard SMT-LIB format. The
current version of Simply is able to generate problem instances falling
into the quantifier free linear integer arithmetic logic. The compiler has
been developed with the aim of building a system for easy CSP model-
ing and solving. By taking advantage of the year-over-year increase in
performance of SMT solvers, we hope that such a system can serve as
an alternative to other decision procedures in many applications. The
compiler can also be used for easy SMT benchmark generation.

1 Introduction

Over the last decade there have been important advances in logic based tech-
niques and tools. Advances have been especially significant in the field of propo-
sitional satisfiability (SAT), to the point that nowadays modern SAT solvers
can tackle real-world problem instances with millions of variables. Hence, SAT
solvers have become a viable engine for solving combinatorial discrete prob-
lems. For instance, in [2], an application that compiles specifications written in
a declarative modeling language into SAT is shown to give promising results. See
also [7, 17] for some applications of SAT technology on industrial problems. In-
teresting comparisons between SAT and Constraint Satisfaction Problem (CSP)
encodings and techniques can be found in [16].

SAT techniques have been adapted for more expressive logics. For instance,
in the case of Satisfiability Modulo Theories (SMT), the problem is to decide
the satisfiability of a formula with respect to a decidable background theory,
such as the theory of linear (integer or real) arithmetic, arrays, lists, etc., or
combinations of them, in first order logic with equality [14]. Input formulas
are often syntactically restricted, for example, to be quantifier-free, so that
the problem is still decidable. Hence, an SMT instance is a generalization of
a boolean SAT instance in which some propositional variables have been re-
placed by predicates from the underlying theories, and can contain formulas
? Partially supported by the Spanish Ministry of Science and Innovation through the

project SuRoS (ref. TIN2008-04547/TIN)

like, e.g., f(f(x)− f(y)) 6= f(z) ∧ x+ z ≤ y ∧ y ≤ x⇒ z < 0, providing a much
richer modeling language than plain propositional formulas. Adaptations of SAT
techniques to the SMT framework have been described in [15].

The main application area of SMT is hardware and software verification.
However, the available theories do not restrict the usage of SMT to verification
problems and, in fact, they allow to encode many problems outside the verifi-
cation area in a very natural way. There are already promising results in the
direction of adapting SMT techniques for solving CSPs, even in the case of com-
binatorial optimization (see, e.g., [10] for an application of an SMT solver on
an optimization problem, being competitive with the best weighted CSP solver
with its best heuristic on that problem). Fundamental challenges on SMT for
Constraint Programming (CP) and Optimization are detailed in [11].

Since the beginning of CSP solving, its holy grail has been to obtain a declar-
ative language that allows users to easily specify their problem and forget about
the techniques required to solve it. There are a lot of successful systems in this
direction, just to comment on two of them: MiniZinc [9] proposes to be a stan-
dard CSP modeling language that can be translated into a kind of intermediate
code called FlatZinc, for which several solvers provide specialized front-ends;
ESSENCE [5] allows the user to specify combinatorial problems in a formal lan-
guage with natural language and discrete mathematics facilities.

Simply is intended to be a declarative programming system for easy model-
ing and solving of CSPs. Although the richness of its input language does not
reach the level of ESSENCE or MiniZinc, its simplicity makes it really practi-
cal. The input language of Simply (see Figure 1) is similar to that of EaCL [8]
and MiniZinc, and its main implemented features are arrays, Forall sentences,
comprehension lists, and some global constraints.

Problem:queens_8

Data

n:=8;

Domains

Dom rows=[1..n];

Variables

IntVar q[n]::rows;

Constraints

AllDifferent([q[i] | i in [1..n]]);

Forall(i in [1..n-1]) {

Forall(j in [i+1..n]) {

q[i]-q[j]<>j-i;

q[j]-q[i]<>j-i;

}

}

Fig. 1. queens 8.y: A naive encoding for the 8-Queens problem.

Simply works in the spirit of SPEC2SAT [3], which transforms problem spec-
ifications written in NP-SPEC [1] into SAT instances in DIMACS format. How-
ever, as said, the input language of Simply is similar to that of EaCL and, most
importantly, it generates SMT instances according to the standard SMT-LIB
language [13] instead of SAT instances. Then, the problem can be solved by us-
ing any SMT solver supporting the required theories. Thanks to the higher level
of expressivity of SMT, the resulting SMT instances are smaller than if they
where just plain SAT and, in many cases, as we show in Section 4, the problems
can be solved in a reasonable amount of time by state-of-the-art SMT solvers.

Our aim is to take advantage of the race for efficiency between SMT solvers,
and to expand the application of SMT techniques to new areas. The system can
also serve as a CSP benchmark generator for SMT solvers comparison. Currently,
Simply generates quantifier-free linear integer arithmetic formulas, but there are
plans to extend the compiler in order to deal with other interesting theories such
as, e.g., arrays and bit-vectors.

The rest of the paper is structured as follows. In Section 2 we recall some
basic concepts on SMT. In Section 3 we introduce the tool and its language, and
give some details about the compiler. In Section 4 we discuss some benchmarks.
Finally, in Section 5 we conclude and discuss further work.

2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability
of a first-order formula with respect to some background first-order theory. That
is, an SMT instance is a first-order formula where some function and predicate
symbols have predefined interpretations, according to the background theories.
Examples of theories are Equality and Uninterpreted Functions, Linear Inte-
ger Arithmetic, Linear Real Arithmetic, their fragments Integer Difference Logic
and Real Difference Logic, Arrays (useful in modeling and verifying software
programs), Bit-Vectors (useful in modeling and verifying hardware designs), or
combinations of them (see [13] for details). Most SMT solvers are restricted to
decidable quantifier free fragments of their logics, but this suffices for many ap-
plications. Usually, SMT solvers deal with problems with thousands of clauses
like, e.g., x + 3 < y ∨ y = f(f(x + 2)) ∨ g(y) ≤ 1, containing atoms over com-
bined theories, and involving functions with no predefined interpretation, i.e.,
uninterpreted functions.

There are two main approaches to solve SMT instances, namely, the eager
and the lazy approach. In the eager approach, the formula is translated into
an equisatisfiable propositional formula. This allows the use of off-the-shelf SAT
solvers, but has important drawbacks like, e.g., exponential memory blow-ups.
For this reason most, if not all, state-of-the-art SMT solvers implement a lazy
approach, which does not involve a translation into SAT. One of these approaches
is DPLL(T) [12], which consists of a general DPLL(X) engine, very similar in
nature to a SAT solver, whose parameter X is instantiated with a specialized
solver Solver

T
for a given theory T , producing a DPLL(T) system. The basic

idea is making the DPLL(X) engine and Solver
T

work in cooperation: while
the DPLL(X) engine is in charge of enumerating (partial) propositional models,
Solver

T
is responsible for checking whether these models are consistent with the

given theory T (for example, if T is the theory of Linear Integer Arithmetic and
the current boolean model contains x+ 2y ≤ 0, −y− z ≤ 0 and x− 2z > 1, then
Solver

T
has to detect that the current boolean assignment is T -inconsistent).

Notice that Solver
T

only needs to handle conjunctions of literals from theory T .
In this way, given a formula F and a theory T , we are determining whether there
is a model of T ∪ {F}.

Current SMT solvers can deal with several theories and logics. For the pur-
poses of our tool, as we explain in Section 3, there are two logics which are espe-
cially relevant, namely, quantifier free Integer Linear Arithmetic (QF LIA) and
its fragment Integer Difference Logic (QF IDL). QF LIA formulas are boolean
combinations of inequations between linear polynomials over integer variables.
QF IDL formulas are boolean combinations of inequations of the form x− y < b
where x and y are integer variables and b is an integer constant (see [13] for
details). Such atoms occur in the definition of feasible solutions for many prob-
lems. For instance, they can be used to express constraints on the time elapsed
between pairs of events. Since the satisfiability of conjunctions of difference logic
literals can be reduced to the absence of negative cycles in finite weighted graphs,
it can be decided in O(n3) time by the Bellman-Ford algorithm. For this reason,
many solvers give a special treatment to such kind of literals.

3 Simply: The tool

In this section we describe the input language and features of Simply through
an example. Let us consider the n-Queens problem: given a number n of queens
of the chess game, the problem is to find a position in a board of size n × n,
for each queen, such that no queen threatens any other (i.e., they are not in the
same column, row or diagonal). A naive model of the n-Queens problem (for
n = 8) in the Simply input language can be found in Figure 1, with an array q
of n integer variables where q[i], for i in 1..n, denotes the row where the queen
of column i is placed. The problem is solvable iff there exists an assignment for
q, according to its domain, such that all the posted constraints are satisfied, i.e.,
all the values of q are different (i.e., no two queens are in the same row) and the
distances between the indexes (columns) and values (rows) of any two pair of
elements of the array are distinct (i.e., no two queens are in the same diagonal).

In Figure 2 the architecture of Simply is depicted throughout the process
of compiling and solving the 8-Queens problem. Let the input of the compiler
be the queens 8.y file of Figure 1. In the compilation process all constants are
replaced by their associated value, and all variables are translated into SMT
integer variables. Constraining a variable to its domain results in a disjunction
of equalities when the domain is an explicit enumeration of values, or into a con-
junction of two inequality predicates when the domain is described as a range.
The translation of the constraints typically results into a conjunction of QF LIA

Fig. 2. The architecture of Simply.

predicates and, in some occasions (as in this case for queens 8.y), into a con-
junction of QF IDL predicates. In the end, the compilation process produces a
queens 8.smt file (see Figure 3) in the standard SMT-LIB format.

The generated SMT problem instance can then be solved by any of the SMT
solvers supporting the QF LIA logic. Solving queens 8.smt with the desired
SMT solver will result into a sat or unsat answer (notice that these solvers
are complete). In addition, some of them (e.g., Yices [4]) can return a model
(in particular, as shown in Figure 4, the values of the SMT variables) when the
problem is satisfiable. In general the names of the variables are easy to interpret.
However, we have left as future work the recovering process from SMT solutions
to values of the variables in the original (queens 8.y) file, as there is no standard
format for solution output.

3.1 Structure of the Simply input files

Since we are interested in modeling CSPs easily, one of the goals of our tool is
simplicity. For this reason, we have chosen the input language of Simply to be
similar to that of EaCL [8] and MiniZinc [9]. The syntax of our language is given
in Figure 10 at the end of the document, with BNF-style production rules .

A CSP instance specification in our language has four parts:

1. Data definition. This is where the constants, that will be used in the rest of
the specification, are defined. These can be either integer or boolean con-
stants and their associated expressions must be evaluable at compilation
time.

2. Domains definition. A domain characterizes the set of possible values of a
variable. It can be defined by a list with ranges and individual values, or by a

(benchmark queens_8.smt

:source {Generated by Simpl.y, ima.udg.edu (ESLiP)}

:category {testing}

:logic QF_IDL

:extrafuns ((q_1 Int) (q_8 Int))

:formula

(and

(and

(and (>= q_1 1) (<= q_1 8))

...

(and (>= q_8 1) (<= q_8 8))

)

(and

(distinct q_1 ... q_8)

(and

(and (distinct (- q_1 q_2) (- 2 1)) (distinct (- q_2 q_1) (- 2 1))

...

(distinct (- q_1 q_8) (- 8 1)) (distinct (- q_8 q_1) (- 8 1)))

(and (distinct (- q_2 q_3) (- 3 2)) (distinct (- q_3 q_2) (- 3 2))

...

(distinct (- q_2 q_8) (- 8 2)) (distinct (- q_8 q_2) (- 8 2)))

...

(and (distinct (- q_7 q_8) (- 8 7)) (distinct (- q_8 q_7) (- 8 7)))

)

)

)

)

Fig. 3. queens 8.smt: SMT problem resulting from the compilation of the queens 8.y

file of Figure 1.

sat (= q_1 5)(= q_2 2)(= q_3 8)(= q_4 1)

(= q_5 4)(= q_6 7)(= q_7 3)(= q_8 6)

Fig. 4. The answer of Yices to the queens 8.smt benchmarck.

comprehension list. The values of these lists must be evaluable at compilation
time.

3. Variables declaration. A variable can denote either an integer, a boolean,
or a multidimensional array of integers or of booleans. Integer variables (and
elements of integer arrays) are in fact finite domain variables and, hence,
they must be constrained to some previously defined domain.

4. Constraints posting. This is where the problem is modeled, by posting the
set of constraints that define the feasible solutions of the problem.

3.2 The Constraints

The input language deals with formulas, global constraints and the If Then Else
constraint.

– Formulas, or boolean expressions, are basic constraints built up from integer
and boolean variables and constants. The following operators are supported:
=, <>, <, =< and >= for integers and Not, And, Or, Xor, Implies and Iff for
booleans.

– Currently the following global constraints are supported:
• Sum(List,Value). This constraint enforces equality between Value and

the sum of all elements of List. When List is empty, Value is enforced
to be zero.

• Count(List,Value,N). This constraint states equality between N and
the number of occurrences of Value in List. When List is empty, N is
enforced to be zero.

• AllDifferent(List) requires all the elements of List to be different.
Let us remark that the elements of List, as well as the Value and N param-
eters, are allowed to be arithmetic expressions containing integer variables.
Notice also that global constraints can not be combined with boolean oper-
ators.

– The If Then Else (φ) {C1} {C2} constraint states that, when the formula
φ is satisfied, then the constraints C1 must be satisfied and, when φ is not
satisfied, then the constraints C2 must be satisfied. Let us remark that the
formula φ does not need to be evaluable at compilation time.

Constraints can be posted either (i) directly, (ii) through the If-Then-Else
statement (which has nothing to do with the If Then Else constraint), or (iii)
through the Forall statement. These two statements are processed at compila-
tion time. For instance, when the compiler finds an If-Then-Else statement, it
evaluates the If condition. If it is true, the constraints of the Then branch are
posted and, otherwise, the constraints of the Else branch are posted. 1.

It is important to notice the difference between the If-Then-Else statement
and the If Then Else constraint, whose condition, as said, is not evaluated at
compilation time. Consider, for instance, the following example:

If (i<4) Then {m[i]<>m[i+1];} Else {m[i]<>m[i-1]; m[i]=m[i-2];}

Since condition i<4 must be evaluated at compilation time, i cannot be a
“constraint” variable, i.e., it must be a constant or a “local” variable, e.g., an
index of a Forall statement. If i<4 was to be evaluated during computation, then
the following constraint should be posted:

If_Then_Else (i<4) {m[i]<>m[i+1];} {m[i]<>m[i-1]; m[i]=m[i-2];} ;

The semantics of a Forall statement is as usual and can be illustrated with
the following example:
1 The Else branch, contrarily to the case of the If Then Else constraint, is optional.

Forall(i in [2..4]) {m[i]<>m[i-1];}

This results into the replication of the constraint m[i]<>m[i-1] with the local
variable i being replaced by the appropriate values (the compilation techniques
used for the expansion are quite similar to the ones used for comprehension lists):

m[2]<>m[1]; m[3]<>m[2]; m[4]<>m[3];

Lists can be extensional, by directly enumerating elements and ranges e.g.,
[1, x, 3..5, m[a]+3], or intensional via comprehension lists à la Haskell. This
powerful and expressive feature allows us to generate complicated lists easily. We
illustrate its usage with the following example:

[m[i,j] | i in [1..3], j in [1..3], i<>j]

results into

[m[1,2], m[1,3], m[2,1], m[2,3], m[3,1], m[3,2]]

The first part of a comprehension list is the pattern, i.e., the expression
that we want to generate. Currently, patterns must be arithmetic expressions
(in this example, the elements of the bidimensional array m). The rest of the
comprehension list is formed by two distinct kinds of expressions, namely, the
generators (in the example, i in [1..3] and j in [1..3], that expand the
pattern) followed by the filters, that restrict these expansions (e.g., i<>j).

3.3 Compilation

The compiler has been implemented in Haskell. The compilation process has
two steps: the first step only checks for syntactic compliance and some minor
semantic details, and generates an intermediate code. The second step is the
one in charge of semantic analysis and the final SMT-LIB code generation. This
code generation step distinguishes between expressions that must be evaluated
at compilation time (such as, for instance, the expressions in the condition of the
If-Then-Else statement), or translated into SMT-LIB expressions (for instance
a basic constraint).

The names of the variables are preserved from the input file to the result-
ing SMT-LIB formula. The only exceptions are arrays: for instance, m[10] is
translated into ten SMT variables m 1,m 2,...,m 10.

The function in charge of the final code generation is codeGeneration, which
receives an IntermediateCode and returns a String with the generated code. To
illustrate the simplicity and convenience of using Haskell for the code generation
step, in Figure 5 we show the codeGeneration function for the intermediate
code of the global constraint Count. First of all, the function unfolds list and
obtains the value of value. Then, it generates the list of the comparisons between
the elements of the unfolded list and the value that we are looking for. Next,

it applies the ite operator to each element reifying these comparisons2. In the
end, it returns the string that enforces the value of times to be equal to the sum
of the reifications.

codeGeneration :: IntermediateCode -> String

codeGeneration (COUNT list value times)

= code

where

l = (unfoldList list)

v = (expValue value)

comps = map (\x -> "(= "++ x ++" "++ v ++")") l

reifi = map (\x -> "(ite "++ x ++" 1 0)") comps

sum = "(+ "++ (concat reifi) ++")"

code = "(= "++(expValue times)++" "++sum++")"

Fig. 5. Haskell code for compiling the Count global constraint.

4 Examples and Benchmarks

In the following we describe the decisional CSPs used in our benchmarks and
illustrate the use of Simply for one of them. The problems are the following:

Problem: SchursLemma_10_3

Data n_balls := 10; n_boxes := 3;

Domains Dom d_boxes = [1..n_boxes];

Variables IntVar putIn[n_balls] :: d_boxes;

Constraints

Forall(i in [1..n_balls]) {

Forall(j in [1..n_balls]) {

Forall(k in [1..n_balls]) {

If (i+j=k) Then {

(putIn[i] <> putIn[j]) Or (putIn[i] <> putIn[k]); }

}

}

}

Fig. 6. A modeling for the Schur’s Lemma problem instance with 10 balls and 3 boxes.

– CSPLib [6] problem 015, Schur’s Lemma. The problem is to put n balls
labelled {1, . . . , n} into 3 boxes so that, for any triple of balls (x, y, z) with

2 Notice that the SMT-LIB ite operator will return 1 when the comparison is satisfied
and 0 otherwise.

x + y = z, not all are in the same box. This problem has a solution iff
n < 14. (Notice that in the definition it is implicit that no ball x can be at
the same box of ball 2x.) In Figure 6 we can find the modeling used in the
benchmarks for this problem, where putIn is an integer array that indicates
the box number for the n balls balls. In the table of Figure 9, the entry
Schurl i j denotes the instance of the problem with i balls and j boxes.

Problem:bacp_12_6

Data n_courses := 66; n_periods := 6;

load_per_period_lb := 10; load_per_period_ub := 24;

courses_per_period_lb := 2; courses_per_period_ub := 10;

Domains

Dom periods=[1..n_periods];

Dom addload=[load_per_period_lb..load_per_period_ub];

Dom addcourses=[courses_per_period_lb..courses_per_period_ub];

Dom load=[1..5]; Dom load_ext=[0..5];

Variables

IntVar course_load[n_courses]::load;

IntVar acourses[n_courses]::periods;

IntVar mload[n_courses,n_periods]::load_ext;

IntVar load_per_period[n_periods]::addload;

IntVar course_per_period[n_periods]::addcourses;

Constraints

// courses load

course_load[1]=1;

course_load[2]=3;

...

// course prerrequisites

acourses[7] < acourses[1];

...

Forall(t in [1..n_periods]){

Count([acourses[j] | j in [1..n_courses]], t, course_per_period[t]);

Forall(c in [1..n_courses]) {

If_Then_Else(acourses[c] = t)

{ mload[c,t] = course_load[c]; }

{ mload[c,t] = 0; } ;

}

Sum([mload[i,t] | i in [1..n_courses]], load_per_period[t]);

}

Fig. 7. A modeling for the BACP 12 problem instance with 6 periods.

– CSPLib problem 030, Balanced Academic Curriculum Problem (BACP). The
BACP objective is to design a balanced academic curriculum by assigning
periods to courses in a way such that the academic load of each period is

balanced, i.e., as similar as possible. The curriculum must obey the following
administrative and academic regulations:

1. Courses must be assigned within a maximum number of academic peri-
ods (n periods).

2. Each course has a number of credits or units that represent the academic
effort required to successfully follow it (course load[n courses]).

3. Some courses can have other courses as prerequisites.
4. A minimum amount of academic credits per period is required to con-

sider a student as full time, and a maximum amount of academic credits
per period is allowed in order to avoid overload (load per period lb,
load per period ub).

5. A minimum number of courses per period is required to consider a stu-
dent as full time, and a maximum number of courses per period is allowed
in order to avoid overload (courses per period lb, courses per pe-
riod ub).

The goal is to assign a period to every course in a way such that the
minimum and maximum academic load for each period, the minimum and
maximum number of courses for each period, and the prerequisite rela-
tionships are satisfied. In Figure 7 we can find the modeling used in the
benchmarks for this problem. Using the Count global constraint we re-
strict the number of courses per period. Notice that course per period[t]
has domain [courses per period lb .. courses per period lb]. With
the Forall statement we “load” the table of credits per period and with
the global constraint Sum we restrict the number of credits per period. No-
tice again that load per period[t] has domain [load per period lb ..
load per period lb]. In the table of Figure 9, the entry Bacp 12 j denotes
the instance of the BACP 12 problem with j periods.

– Job-shop scheduling. A job shop has some machines, each performing a dif-
ferent operation. There are some jobs to be performed and a job is a sequence
of tasks. Each task involves processing by a single machine for some duration
and a machine can operate on at most one task at a time. Tasks cannot be
interrupted. The goal is, given a deadline, to schedule each job such that
its ending time does not exceed the deadline. In Figure 8 we can find the
modeling used in the benchmarks for this problem. With the first nested
Forall statements we enforce tasks of the same job to be scheduled in the
right order such that a task cannot start before than its previous task has
finished. With the second Forall statement we enforce the last tasks of the
jobs to be finished before the deadline. And with the third nested Forall
statements we forbid the overlapping of tasks using the same machine. In
the table of Figure 9, the entry Jobshop i means an instance of the Job-shop
problem with maximal duration i, 5 machines and 8 jobs.

– Queens (see Section 3). In the table of Figure 9, the entry Queens i means
an instance of the queens problem with i queens.

Problem:jobshop_58

Data n_machines := 5; n_jobs := 8;

n_tasks_per_job := 5; max_duration:= 58;

Domains Dom machines=[0..n_machines-1];

Dom duration=[0..max_duration];

Dom task_duration=[1..9];

Variables

IntVar job_task_start[n_jobs,n_tasks_per_job]::duration;

IntVar job_task_machine[n_jobs,n_tasks_per_job]::machines;

IntVar job_task_duration[n_jobs,n_tasks_per_job]::task_duration;

Constraints

// machine for jobs and tasks

job_task_machine[1,1]=1;

...

// duration for jobs and tasks

job_task_duration[1,1]=5;

...

Forall (j in [1..n_jobs]) {

Forall (k in [1..n_tasks_per_job-1]) {

job_task_start[j, k] + job_task_duration[j, k]

=< job_task_start[j, k + 1]; } }

Forall(j in [1..n_jobs]) {

job_task_start[j, n_tasks_per_job] +

job_task_duration[j, n_tasks_per_job]

=< max_duration; }

Forall(ja in [1..n_jobs-1]) {

Forall(jb in [(ja+1)..n_jobs]){

Forall(ka in [1..n_tasks_per_job]){

Forall(kb in [1..n_tasks_per_job]){

(job_task_machine[ja,ka] = job_task_machine[jb, kb])

Implies

((job_task_start[ja, ka] + job_task_duration[ja, ka]

=< job_task_start[jb, kb])

Or

(job_task_start[jb, kb] + job_task_duration[jb, kb]

=< job_task_start[ja, ka])); } } } }

Fig. 8. A modeling for the Jobshop problem instance with time limit 58, 5 machines,
8 jobs and 5 tasks per job.

We have run the SMT solvers which participated in the QF LIA division of
the Satisfiability Modulo Theories Competition3 (SMT-COMP) 2008, namely,

3 SMT-COMP: The SAT Modulo Theories Competition (http://www.smtcomp.org).

Z3.2, MathSAT-4.2, CVC3-1.5, Barcelogic 1.3 and Yices 1.0.10, against some
benchmarks generated with Simply from the previous problems.4

For the sake of comparison, we have run some solvers of different nature
on the same problems, namely, G12 MiniZinc 0.9, ECLiPSe 6.0, SICStus Pro-
log 4.0.7, SPEC2SAT 1.1 and Comet 1.2. The same benchmarks have been used
for G12 MiniZinc 0.9, ECLiPSe 6.0 and SICStus Prolog 4.0.7 (after a transla-
tion from the MiniZinc modeling language to the FlatZinc low-level solver input
language, by using the MiniZinc-to-FlatZinc translator mzn2fzn). SPEC2SAT

transforms problem specifications written in NP-SPEC into SAT instances in
DIMACS format, and thus can work in cooperation with any SAT solver sup-
porting that format. In our tests, we have used SPEC2SAT together with zChaff
2007.3.12. With respect to Comet, only its constraint programming module has
been tested. In order for the comparison to be fair, we have preserved as much as
possible the modeling used in SMT and avoided the use of any search strategy
when dealing with other solvers, as no search control is possible within SMT
solvers.

Figure 9 shows the time in seconds spent by each solver in each problem,
with a timeout of 1800 seconds. The benchmarks were executed on a 3.00 GHz
Intel Core 2 Duo machine with 2 Gb of RAM running under GNU/Linux 2.6.
The column labeled Simply refers to the Simply compilation time. The follow-
ing 5 columns contain the solving time spent by the different SMT solvers on
the generated SMT instances. The rest of columns detail the times (including
compilation and solving) spent by solvers of other nature. We can observe the
following:

– For the Queens problem, G12 obtains the best results. The poor performance
of SMT solvers on this problem is probably due to the fact that the mod-
eling (see Figure 1) results in a SMT instance with only unit clauses, while
SMT is well-suited for problems whose satisfiability highly depends on the
combination of the boolean structure and the background theory.

– For the BACP problem, similar results are obtained by SMT solvers, G12 and
SICStus Prolog. However, complicated instances around the phase transition
are not solved by any of them. The SMT instances generated by Simply for
this problem include a relevant boolean structure mixed with arithmetic ex-
pressions, mainly due to the Count and Sum global constraints (see Figure 7).
This is probably why some SMT solvers obtain extremely good results on
this problem. It is also important to notice that SPEC2SAT fails to solve
all the instances, since the generated SAT formula is too big for zChaff.
Moreover, Comet is very unstable on this problem.

– For the Schur’s Lemma problem, good results are obtained by most of the
solvers. Surprisingly, G12 consumes all the time with no answer. With the
chosen modeling, (see Figure 6), Simply is able to generate an SMT instance

4 Since our naive modeling of the Queens problem falls into the QF IDL fragment
of QF LIA, we have made this explicit in the generated instances. In this way, the
SMT solvers with a specialized theory solver for QF IDL can take profit of it.

with no arithmetic at all, since all expressions can be evaluated at compile
time.

– For the Job-shop problem, best results are obtained by some of the SMT
solvers and by ECLiPSe. This is again a problem with a relevant boolean
structure, and some arithmetic.

Simply + SMT solver Other tools
S
im

p
ly

(c
o
m

p
il
a
ti

o
n
)

Z
3
.2

M
a
th

S
A

T
-4

.2

C
V

C
3
-1

.5

B
a
rc

el
o
g
ic

1
.3

Y
ic

es
1
.0

.1
0

G
1
2

M
in

iZ
in

c
0
.9

m
zn

2
fz

n
+

E
C

L
iP

S
e

6
.0

m
zn

2
fz

n
+

S
IC

S
tu

s
4
.0

.7

S
P

E
C

2
S
A

T
1
.1

C
o
m

et
1
.2

Queens 50 0.22 t.o. 53.00 m.o. 11.72 29.47 0.22 2.04 6.98 248.01 t.o.
Queens 100 0.72 t.o. t.o. m.o. 389.04 19.22 0.84 t.o. 28.51 t.o. t.o.
Queens 150 1.54 t.o. t.o. m.o. 995.94 t.o. 150.40 t.o. 256.18 t.o. t.o.

Bacp 12 6 0.17 0.55 2.53 t.o. 56.98 0.19 0.84 t.o. 3.8 m.o. 268.56
Bacp 12 7 0.18 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o. m.o. t.o.
Bacp 12 8 0.22 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o. m.o. t.o.
Bacp 12 9 0.21 0.27 10.86 t.o. 314.91 0.64 0.94 t.o. 5.3 m.o. 0.51
Bacp 12 10 0.24 0.24 14.97 t.o. 190.10 0.79 1.44 t.o. 6.02 m.o. 0.60
Bacp 12 11 0.24 0.27 13.60 t.o. 237.50 1.24 1.70 t.o. 7.97 m.o. 19.56
Bacp 12 12 0.26 0.48 13.24 t.o. 338.46 1.32 40.59 t.o. 11.32 m.o. t.o.

Schurl 12 3 0.06 0.01 0.08 7.91 0.03 0.02 t.o. t.o. 0.24 0.38 0.39
Schurl 13 3 0.08 0.04 0.07 14.30 0.05 0.05 t.o. t.o. 0.28 0.55 0.40
Schurl 14 3 0.09 0.23 0.50 18.24 0.12 0.16 t.o. t.o. 0.32 0.50 0.40
Schurl 15 3 0.10 0.35 0.79 29.15 0.15 0.18 t.o. t.o. 0.37 0.73 0.40

Jobshop 54 0.31 0.12 0.27 104.97 7.79 2.69 34.13 1.54 33.30 80.41 1.79
Jobshop 55 0.32 0.20 0.35 211.48 11.57 3.63 122.16 2.16 t.o. 80.03 11.65
Jobshop 56 0.30 0.12 0.46 358.53 12.08 4.37 396.03 3.13 t.o. 88.11 100.01
Jobshop 57 0.30 0.34 0.89 475.55 16.05 6.62 1115.09 1.13 t.o. 85.66 892.54
Jobshop 58 0.34 0.10 0.25 134.71 20.75 11.48 0.09 1.22 236.64 95.11 0.82

Fig. 9. Time in seconds spent on solving the problems detailed in Section 4. The first
column refers to Simply compilation time. Time out (t.o.) was set to 1800 seconds.
Memory out is denoted by m.o.

Globally, it seems that most of the SMT solvers are good in all the problems
considered. This is especially relevant if we take into account that those solvers

come from the verification arena and, therefore, have not been designed with
those kind of constraint problems in mind. Moreover, they seem to scale up
very well with the size of the problems. Let us remark that these problems are
just the first ones at hand that we have considered, i.e., we have not artificially
chosen them. For this reason, SMT can be expected to provide a nice compromise
between expressivity and efficiency for solving CSPs in some contexts.

5 Conclusion and further work

We have presented Simply, a tool for easy CSP modeling and solving, whose
main novelty is the generation of SMT problem instances in the standard SMT-
LIB format as output. Our aim is to take advantage from the improvements
that take place from year to year in SMT technology and methods, in order
to solve CSPs. Our tool can also serve as a CSP benchmark generator for SMT
solvers comparison. However, much work is still to be done in the development of
Simply to make it competitive with other tools for CSP solving. We distinguish
among three aspects:

Features of the tool Probably the most important aspect of future work is to
study the way of obtaining better SMT encodings from our modeling language.
This can be done either by obtaining less naive translations of constraints, espe-
cially for global ones, and by introducing new theories and logics. For instance,
(unidimensional) arrays of integers in Simply programs can be flattened into in-
teger variables (as we currently do) or they can be directly translated into SMT
array variables. Nevertheless, since SMT solvers highly differ in the treatment
given to different theories and logics, more experimentation has to be done in
order to decide a suitable encoding for every construct. From the aforementioned
experimentation, we would like Simply to be able to automatically determine a
suitable logic for each problem. Another option could be letting the user indicate
the desired target logic. This would make Simply be a more complete benchmark
generator.

Also, as said in Section 3, we need to provide a translation-back module for
every SMT solver, in order to translate the model found (if any) to a set of values
of the original Simply program variables. This module will not be unique since
there is no standard language for SMT solver solution answers5. Nevertheless,
the definition of a standard language for models of satisfiable benchmarks is
planned in the SMT-LIB definition document [13].

The compiler can also be improved in order to obtain SMT formulas without
unevaluated subexpressions that could be evaluated at compilation time. For
instance (+ 3 (+ a 10)) should be (+ a 13).

Input language The input language can be extended in several directions. For
example, input/output operations should be added in order to, e.g., be able to
5 There exist SMT solvers that cannot even be queried for a model.

load a problem instance from a file. The language could also be enriched so that
users can define their own predicate constraints. Formula operators could be
extended by allowing lists of formulas as parameters. This would allow compre-
hension lists to generate formulas too instead of just arithmetic expressions.

Concerning the declarativeness of the language, more global constraints such
as, for instance, cumulative, circuit and element could be added. It could also
be interesting to add set variables and therefore to provide global constraints on
them. We believe that the use of the bit-vectors theory for encoding those con-
straints would result in compact SMT instances that could be solved efficiently.

The addition of optimization capabilities to Simply heavily depends on hav-
ing those capabilities already implemented in SMT solvers. However, optimiza-
tion is not the main interest of the SMT community and so it is only supported
by some SMT solvers, such as Yices [4]. For SMT solvers not having optimiza-
tion capabilities, one possibility could be to transform the optimization problem
into a decision problem by adding the objective function as an additional con-
straint, and then compute the optimum with (e.g. linear or binary) search. This
is roughly what is done in [10] although, in this case, it is done internally by the
solver. However, doing this from outside the solver would have the drawback of
having to start from scratch at each search.

Finally, a complementary and interesting direction of research can be the
development of a compiler from the MiniZinc or the FlatZinc languages to the
SMT-LIB format, or even to the native language of some concrete SMT solver
(in order to exploit some particular capabilities of it).

Benchmarking We have done some benchmarking between SMT solvers and
some solvers of different nature, on a few classic constraint satisfaction problems.
In most of them, the performance of the SMT solvers has turned out to be similar
or even better than of others (without strategies). However, additional experi-
ments need to be done in order to know which kind of problems can be solved
in reasonable time by using our tool. For example, less naive formulations (e.g.,
with symmetry breaking) of classic problems need to be tested. We also plan to
do some experiments with industrial problems and compare the performance of
state-of-the-art SMT solvers with other CSP solvers on the same problems.

Linux and Windows binaries of Simply, as well as documentation and some
benchmarks, can be found at: http://ima.udg.edu/~villaret/simply.

References

1. Marco Cadoli, Giovambattista Ianni, Luigi Palopoli, Andrea Schaerf, and
Domenico Vasile. NP-SPEC: an executable specification language for solving all
problems in NP. Computer Languages, 26(2–4):165–195, July 2000.

2. Marco Cadoli, Toni Mancini, and Fabio Patrizi. SAT as an effective solving tech-
nology for constraint problems. In Foundations of Intelligent Systems, 16th Intl.
Symposium, ISMIS’06, volume 4203 of LNCS, pages 540–549. Springer, 2006.

3. Marco Cadoli and Andrea Schaerf. Compiling problem specifications into SAT.
Artificial Intelligence, 162(1–2):89–120, 2005.

4. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper available at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

5. Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Mart́ınez-Hernández,
and Ian Miguel. Essence: A constraint language for specifying combinatorial prob-
lems. Constraints, 13(3):268–306, 2008.

6. Ian P. Gent and Toby Walsh. CSPLIB : A benchmark library for constraints. In
CP, volume 1713 of LNCS, pages 480–481. Springer, 1999.

7. Henry A. Kautz. Deconstructing planning as satisfiability. In Proceedings of
the Twenty-first Conference on Artificial Intelligence, AAAI’06, pages 1524–1526.
AAAI Press, 2006.

8. Patrick Mills, Edward Tsang, Richard Williams, John Ford, James Borrett, and
Wivenhoe Park. Eacl 1.5: An easy constraint optimisation programming language.
Technical Report CSM-324, University of Essex, Colchester, U.K., 1999.

9. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language.
In Principles and Practice of Constraint Programming, 13th International Confer-
ence, CP’07, volume 4741 of LNCS, pages 529–543. Springer, 2007.

10. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization
Problems. In Theory and Applications of Satisfiability Testing, 9th International
Conference, SAT’06, volume 4121 of LNCS, pages 156–169. Springer, 2006.

11. Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Ru-
bio. Challenges in Satisfiability Modulo Theories. In 18th International Conference
on Rewriting Techniques and Applications, RTA’07, volume 4533 of LNCS, pages
2–18. Springer, 2007.

12. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

13. Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2. Technical
report, Department of Computer Science, The University of Iowa, 2006. Available
at www.SMT-LIB.org.

14. Roberto Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3(3-4):141–224, 2007.

15. Hossein M. Sheini and Karem A. Sakallah. From propositional satisfiability to
satisfiability modulo theories. In Theory and Applications of Satisfiability Testing,
9th Intl. Conference, SAT’06, volume 4121 of LNCS, pages 1–9. Springer, 2006.

16. Toby Walsh. SAT vs CSP. In Principles and Practice of Constraint Program-
ming, 6th International Conference, CP’00, volume 1894 of LNCS, pages 441–456.
Springer, 2000.

17. Hantao Zhang, Dapeng Li, and Haiou Shen. A SAT based scheduler for tournament
schedules. In Theory and Applications of Satisfiability Testing, 7th International
Conference, SAT’04, Online Proceedings, pages 191–196, 2004.

〈simply program〉 ::= Program:〈id〉 〈data〉 〈domains〉 〈variables〉 〈constraints〉
〈data〉 ::= Data 〈data exp〉∗
〈data exp〉 ::= 〈id〉 := 〈arithm exp〉 ;

| 〈id〉 := 〈formula〉 ;
〈domains〉 ::= Domains 〈domain exp〉∗
〈domain exp〉 ::= Dom 〈id〉 = 〈list〉 ;
〈variables〉 ::= Variables 〈variable exp〉∗
〈variable exp〉 ::= IntVar 〈var id〉 (, 〈var id〉)∗ :: 〈id〉 ;

| BoolVar 〈var id〉 (, 〈var id〉)∗ ;

〈var id〉 ::= 〈id〉
| 〈id〉[〈arithm exp〉 (, 〈arithm exp〉)∗]

〈constraints〉 ::= Constraints 〈sentence〉+
〈sentence〉 ::= 〈statement〉

| 〈constraint〉 ;
〈statement〉 ::= 〈if then else〉

| 〈forall〉
〈if then else〉 ::= If (〈formula〉) Then { 〈sentence〉+ }

| If (〈formula〉) Then { 〈sentence〉+ } Else { 〈sentence〉+ }
〈forall〉 ::= Forall(〈id〉 in 〈list〉) { 〈sentence〉+ }
〈constraint〉 ::= 〈formula〉

| 〈global constraint〉
| If Then Else (〈formula〉) { 〈sentence〉+ } { 〈sentence〉+ }

〈formula〉 ::= Not 〈formula〉
| 〈formula〉 〈bool operator〉 〈formula〉
| 〈arithm exp〉 〈relational operator〉 〈arithm exp〉
| (〈formula〉)
| 〈var id〉
| True

| False

〈global constraint〉 ::= AllDifferent(〈list〉)
| Sum(〈list〉 , 〈arithm exp〉)
| Count(〈list〉 , 〈arithm exp〉 , 〈arithm exp〉)

〈arithm exp〉 ::= 〈numeral〉
| 〈var id〉
| 〈arithm exp〉 〈arithm operator〉 〈arithm exp〉
| (〈arithm exp〉)
| Abs(〈arithm exp〉)

〈list〉 ::= [〈list element〉 (, 〈list element〉)∗]

| [〈arithm exp〉 | 〈var restrict〉 (, 〈var restrict〉)∗]

〈list element〉 ::= 〈arithm exp〉
| 〈range〉

〈var restrict〉 ::= 〈id〉 in 〈list〉
| 〈formula〉

〈range〉 ::= 〈arithm exp〉 .. 〈arithm exp〉
〈bool operator〉 ::= And | Or | Xor | Iff | Implies
〈relational operator〉 ::= = | <> | < | > | =< | >=
〈arithm operator〉 ::= + | - | * | Div | Mod
〈id〉 ::= non-empty sequence of letters and digits not starting with a digit
〈numeral〉 ::= non-empty sequence of digits

Fig. 10. Syntax for the Simply input language.

