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Abstract

We present a shape approximation formalism adequate to compute environment-
mapped refractions. Translucid objects are approximated as spherical lenses. The
geometrical parameters of the lenses are easily derived from the polygonal description
of the objects. We then develop a refraction model that leads to a computationally
inexpensive procedure to compute accurate refractions from environment maps.

1 Introduction

Successful implementations of refractions are generally based on standard ray tracing implemen-
tations [3]. Such implementations achieve optimal results since the exact geometric behavior
of light paths is computed. The computational expense of ray tracing provides a motivation
to investigate lower cost approximation algorithms based on scan line algorithms [14]. Blinn
and Newell approximations [1] provide an overall adequate solution to photorrealistic reflections
rendering in terms of cost, efficiency and accuracy. These scan-line approximations are based on
environment map implementations, and more specifically, reflection map implementations. The
issue of refraction models, however, was not addressed in these approximations. Other simple
refraction models, generally based on transparencies and alpha blending, obviously lack realism,
since the most important aspect of the problem —i.e., the geometry of the refraction of light
paths— is not addressed.

The aim of this work is to extend the general philosophy of environment maps to refraction
models. To do this, we develop a shape approximation model, which is both geometrically
adequate and allow a computationally inexpensive refraction algorithm. An outline of the paper
is as follows: In the next section we present a brief review of current scan-line refraction models,
together with a discussion of their major contributions and drawbacks. Then we contend that
an obvious alternative to low-cost refraction models is to adapt Blinn-Newell reflection maps
to compute refractions. We discuss in section 3 the necessary object shape approximation
conditions to compute geometrically adequate refraction maps. This leads to the main results
of this work, where the issue of shape approximation for refraction models is addressed. To
make this work self-contained, in section 4 we give an outline of refraction geometry. In section
5 some useful approximations and known particular cases are recast in terms of the proposed
formalization. In section 6, some environment map implementation issues and examples are
presented. In section 7, finally, we discuss the conclusions and future work.

! This work was partially supported by a grant of Fundacién Antorchas



Figure 1: Kay and Greenberg refraction model

2 Review of scan-line refraction models

Most scan-line rendering schemes can be somehow adapted to support translucid object rep-
resentation and its associated rendering. The simplest translucid object rendering scheme in
priority list implementations is to ignore refraction at all, so that light rays are not refracted
when passing through the interface between two optical media [2]. Then, the visibility along an
optical ray coincides with the geometric (straight) line between the camera (observer) and the
object to be rendered.

There are commonly two methods to compute transparencies. In interpolated transparency,
the shading value of a pixel p that intersects two polygons P, and P, of a translucid object, is
determined with a linear interpolation between the shading value of the two polygons: I;(p) =
(1 — k)Ip, (p) + kIp,(p), where 0 > k > 1 is the transmission coefficient, which depends in
general on the wavelength. In filtered transparency, polygons are considered as translucid filters:
I+(p) = Ip, (p)+0O.k.Ip,(p), where O is the transparency color of P at the considered wavelength.
It is generally recommended [2] to interpolate only the ambient and diffuse component of P
with the complete shading equation of P, and after that add the specular component of Pj.

A further enhancement was proposed by Kay and Greenberg [6], where the transmission
coeflicient k is a non linear function of z,, the z component of the normal. Kay and Greenberg
sugested an expression k = kyin + [kmaz — kmin).[1 — (1 — 2,)™], where ki and kpq. are the
minimal and maximal transparencies of the object, and m is an arbitrary coefficient, normally
between 2 and 3, where a greater m represents a thinner object (see figure 1).

Z-buffer rendering of translucid objects can be quite cumbersome. Objects are rendered in
an arbitrary order, and since the buffer does not store enough information to determine which
opaque objects are behind translucid objects. An incomplete solution to this is to implement ad-
hoc ordering techniques, for example, to render opaque objects first and translucid objects last.
All these scan-line approximations, however, obviously lack realism, since the most important
problem —i.e., the geometry of the refraction of light paths— is not addressed.

Other proposed techniques are based on sophisticated algorithms and data structures. Mam-
men, for example [7] considers a back-to-front ordering scheme with a multipass rendering and
auxiliary data structures. First, all opaque objects are conventionally scan converted and z-
buffered. Then, translucid objects are back-to-front processed with a transparency z-buffer.
Every translucid object is scan-converted with an additional buffer that stores, per pixel, a
transparency value, color, z value initialized to z,;,, and a flag bit initialized to false. If the
z value of a given pixel is closer to the observer than the corresponding z value in the opaque
z-buffer, but is farther than the corresponding z value in the transparency z-buffer, then the last
z-buffer is updated with the color and z value of the pixel, and the flag bit of the pixel is set
to true. After all translucid objects have been processed, in the transparency z-buffer we have
information about every farthest object whose pixel was set to true. Then the information of
the these pixels is combined with the opaque z-buffer and frame buffer, and the flags are set



Figure 2: Approximation of a generic object with a lens.
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Figure 3: Geometric parameters of the lens.

again to false. This process is repeated back-to-front with all translucid objects.

The solution proposed in this work is to adapt Blinn-Newell environment-maps and other
reflection-map techniques to compute refractions. Then, it achieves adequate geometric proper-
ties with standard one-pass z-buffer rendering schemes, and thus is far simpler to implement.

3 Object shape approximation

Most frequently, scan line algorithms [14] together with Blinn and Newell approximations [1]
provide an overall adequate solution to photorrealistic rendering of reflection models, in terms
of cost, efficiency and accuracy. This scan-line approximations are based on environment map
implementations, and more specifically, reflection map implementations. The aim of this work is
to extend this general philosophy to refraction models. Consider a situation where the shading
value of a pixel p that intersects two polygons P; and P, of a translucid object. The shape of
the “generic object” laying between P; and P, can be represented —in a rough approximation—
as a pair of parallel plane faces. This is exactly what is done in the refraction models considered
in the previous section.

A better approximation can be obtained considering the the object as a lens. Now the object
laying between P; and P, can be described as an object limited by the two sphere segments:
1

the “input” surface is P, (with curvature p; = --), the “output” surface is P, (with curvature

P2 = %) (see figure 3). This optical system possesses axial symmetry with respect to an axis
that intersects the centers of the spheres, called the optical azis.

The intersection of the spheres with the optical axis determines the vertices v; of the lens.
The sign of the curvatures p; will be assigned positive if the surface is convex with respect to the
incidence direction of the optical ray and negative if it is concave. The thickness of the lens is
the distance d between the vertices. In this section we will consider first a formal justification of
the lens model, and then we will discuss how the parameters of the lens can be extracted from



the object data.

The surface S of any object can be subdivided as a set of n domains (i.e., S = U, 5;), in a
way such in every domain of the subdivision, the surface S; can be uniquely characterized as a
function z = f(x,y). A multivariate Taylor series around point (zq, yo) assumes the form

af af 10%f
f(xv y) = f($0, yo) + % |l’07y0 (x - xo) + 8_y |l’07y0 (y - yO) + aw |l’07y0 (x - xo)z +
19%f ., , 2 0°f
aa—yg |l’07y0 (y_yo) —I'?ax—ay |l’07y0 (95—900)(9—90)4‘“‘ (1)

The first term is a constant which depends on the particular origin of the coordinate system,
and therefore need not be considered. We will now introduce some definitions (further details
can be seen in [11]).

DEFINITION 1 The unit normal vector n of the surface S at p = (x,y,z) is given by n =
ﬁ%. Given a smooth function? f in an open set U C ®*, and a vector v € 3?]% (i.e., all
tridimensional vectors originated in p € U), the derivative of f with respect to v is the scalar
Vyf = (fod)(ty), where @ : [0,1]—=U is any curve of parameter U such that &' (to) = v, and
a'(to) represents the derivative of & with respect to t evaluated at to. It can be shown (using
the chain rule) that Vy f = (V f(p))-v. In turn, the derivative of a vectorial field X in an open
set U € R* with respect to a vector v € ?RZ%, with p € U, is defined as VyX = (X 0d)'(tg), where
(X o @)’ is the componentwise derivative of the vectorial function composition. O

DEFINITION 2 The Weingarten map of surface S in point p is the linear map fp 2 Sp,—=5,,
where S, C §R§ (i.e., the tangent space of S at p) is given by L_;)(V) =—-Vyn. O

This expression -understood more easily if we use definition 1- can be stated as Vyn =
(nod) (ty), where @ : [0,1]—S is any curve parametrized in S such that &' (tg) = v. It is easy
to see that L_;)(V) is a measure of the variation rate of n (which, by definition, is of constant
lenght) in passing through p following an arbitrary curve &.

DEFINITION 3 The normal curvature of surface S at point p in the direction v (with || v ||=1)
is the scalar k(v) = L,(v)-v. O

It is easy to see that following v, if k(v) > 0, then the surface bends toward n, and if
k(v) < 0, then the surface bends away n.

2

ExAMPLE 1 Consider the case when S is a (3D) sphere R T N
1

n(p) = ITZIDI' Then L_;? is simply the multiplication by % Moreover, k(v) =
value foglowing every direction v and at every point p € S. O

, with orientation
assumes the same

As can be seen from the example above, in a smooth, oriented (3D) surface S, the normal
curvature k(v) is defined for every vector v of the tangent space S, of S at point p. Then,
the normal curvature at p is a real function with domain in the unit sphere in .S,. Since this
function is continuous and its domain is a compact set, the function must assume its extrema
at certain given directions in .S,. Moreover, this extrema are the eigenvalues of the Weingarten
map fp, and their associated directions are the eigenvectors of the map [11]>. Conversely, any
given eigenvalue of L_;? is stationary.

2Here and in what follows we consider the particular case of three dimensional spaces, but the properties can
be considered in any space of dimension n.
®In a n + 1 space there exist at most n eigenvalues, which are the roots of the characteristic polynomial

det(L — AI).



THEOREM 1 Let V be a finite dimension vectorial space (with inner product -), and let L : V=V
be a linear auto-adjoint transformation in V. Then the eigenvectors of I form an orthonormal
base for V' (see [11] for further details and the demonstration). O

The eigenvalues of L_;? are the principal curvatures of S, and their respective eigenvectors are
the principal curvature directions of S. Every principal curvature is a stationary value of the
normal curvature.

THEOREM 2 Let n be an oriented n-surface in R let p € S and let {k(p),- -+, kn(p)} the
principal curvatures of S at p, with associated curvature directions {vy,---,v,}. Then the
normal curvature k(v) at any direction v € S, (with || v ||=1) is given by

n

k(v) = ki(p)(v-vi)®

=1

(see [11] for further details and the demonstration). O

The Weingarten map has several usefull geometrical properties. A 2-space is a two di-
mensional manifold, i.e., a three-dimensional surface defined over a two-dimensional parameter
space, and henceforth the Weingarten map has two eigenvalues. Moreover, its determinant
K (p) = det(L,) = ky(p)ka(p) is the Gaussian curvature of S at p, and L times the trace of L,
is the mean curvature H(p) = 1 5 K;(p).

This formal basis allows to consider a spherical approximation as a higher order approxima-
tion with respect to parallel plane approximation. Third-order (bicubic) approximations are left
for further analysis. We will now concentrate on how to extract the data needed to characterize
the lens from the surface data. The first step is to find the principal plane P of the lens, in a way
such that it contains the two axes of greatest geometrical disperssion (see figure 2). A simple
way to do this is to consider the coefficients of the plane equation az + by + cz+ d = 0 with the
additional constraint a? + b% 4 ¢? = 1, and adjust a, b, ¢, d with a least square regression.

The following step is to transform the object to a space in which the zy plane coincides
with P, and the origin coincides with the center of the object. The final step is to find the
mean curvature of the points above and below P [8]. This also can be done with a least square
regression, with respect to the functional form F(u,z) = (2 — z9) — p(u + @
2u = 2% 4+ y? is the squared distance to the origin in cylindrical coordinates, p is the curvature

) = 0, where

of the lens, and zg is a vertex of the lens. The distance d between the vertices is the thickness
of the lens. F'is biparametric, and so its regression is straightforward.

4 Principles of the geometry of refraction through a lens

Consider a light ray passing through the interface of two media m; and my at point p (see figure
3). Let s be a vector whose direction is the direction of the incident ray, and whose length is
the refraction coefficient vy of m;. Let o be the (inner) normal® of the surface at p. s’ will be
the vector in the reflected or refracted direction, with length v5. Then s’ = s + I'o, where the
astigmatic constant I'is I' = (\/(1/2)2 — ()’ +(o-s)?-o- s) for refractions, and I' = —2(0-s)
for reflections.

It can be shown [5] that a two-dimensional consideration of the problem of tracing rays
through a lens is equivalent, since the surface is a revolution surface and possesses axial symme-
try. In our convention, where the optical axis coincides with the z axis of the coordinate system,

*Opposed to Computer Graphics practice, it is a widespread convention in geometrical optics to consider the
normal of a surface as a vector pointing toward the center of the surface. Then we will adopt the standard
notation n to refer to the (outer) normal as in Computer Graphics, and o=—n to refer to the (inner) normal.



we can abstract axis z and work with the entities projected on the zy plane, with the origin
of the coordinate axis coincident with the vertex of the surface. To simplify notation, we will
follow the convention that designates the projected entities with the corresponding uppercase
letter (i.e., if s = (n,&,(), then S = (1,£,0)). Moreover, since every ray a* can be regarded as
an origin a plus a parametric direction [ - s, we can choose a on the original ray and in a plane
that contains the surface vertex. That means that a = (z,y,0).

To compute the final rays, it suffices to know, as we will show below, that the final rays are
linear combinations of the initial rays:

A’ = oA + S (2)
S’ = vA + 68,

where o, 3,4, & are real scalars such that ad + Gy = 1. Then if we denote Z the unit versor along
z axis we find that

a’'=aa+fs+ciz (3)
s’ = ~va+ ds + o7,

with ¢y and ¢y two appropriate constants. Finally, it is easy to see that equation system 2 is the
projection of the equation system 3 onto zy plane.

Let a = (z,y,2),a’ = (2/,y, 7)), s = (1,£,¢), ' = (0',&', (). Then we find, from the third
component of equation 3, that

Y =az+ B+ (4)
"=~z24+ 8¢+ co.

Since (8')2 = (¢")> + 8" = ()2, then

¢'= £/ ()2 = (1) + (€)?), (5)

taking positive sign if there were an even number of reflections (including no reflections), and

negative sign otherwise®.

¢' remains undetermined in equation 4 since we don’t know ¢z, but (as we will do below) we
can compute it with equation 5 . As was stated above, ¢; depends on the particular election
of the coordinate system origin. Then it is easy to convert from a given coordinate system to
another.

5 Paraxial approximation and reflecction maps

In a paraxial approximation, light paths are supposed to be close to the optical axis of the
system. Using paraxial approximation, equations 2 and following can be recast with the following
constraints:

o Bryr+1

B = M

Y = M+t (6)
b = Biva+1,

“Here we adopt as a convention that the direction of the incident ray has a possitive third component. If it
is not the case, then the sign of the third component of the resulting reflected or refracted ray must be changed
accordingly, i.e., multiplied by the sign of (.



Figure 4: Example of refraction approximation through reflection maps of resolutions 50x50,
100x 100, 200x200, and 400x400,.

and if we suppose that the first medium is air (i.e., vy = 1) and replacing v for vz, we find

ho= o
n o= (1=v)p (7)
Y2 = (V - 1)/027

Given equation system 2, replacing with constraints 7 and approximations 8, a paraxial
approximation of the equations system is

Al = :g(l—l/)pl—l—l]A—l—[g]S
S = (0= 00— = = | A+
:1 + g(y _ 1),02] s. (8)

These expressions can be used to inexpensively compute refracted rays, for instance, by
means of a z-buffered environment map as the one presented in [9]. Moreover, if the approxima-
tions correspond to small objects or large distances (as in Blinn and Newell [1]), then S’ suffices
to find the refracted ray, neglecting the value of A’. Then, we can claim that the framework
proposed here allows to compute environment map approximation of refracted rays with the
original philosophy of Blinn and Newell.

A reflection map is a projection of the complete environment as seen from a particular
viewpoint (perhaps the center of the reflective/refractive object). Normally the reflection map
is computed by rendering six views of the sceene from the viewpoint, each with a 90 degree view
angle and each looking down an axis of a coordinate system with its origin in the viewpoint. Light
refracted by a refractive object is computed with the reflection map and then this information is
combined with the diffuse refraction and specular illumination components (as in the standard
Phong model):

re=de.D+ sc.S, (9)

where rc is the refracted color of the pixel, dc is the refraction coefficient, D is the diffuse
illumination, sc is the Snell refraction coefficient (exactly computed, as stated in section 3), and
S is the specular illumination. Note that ambient light is accounted for in the diffuse illumination
component. Figure 4 was obtained with this procedure, for different resolutions of the reflection
map.



Figure 5: Kay and Greenberg model versus refraction approximation through reflection map
preprocessing.

6 Computing refractions with standard environment map pre-
processing

We will now discuss how to reuse standard environment map calculations to compute reflections.
Equations 8 allow the computation of refracted rays as s’ ~ Myys,. This suggests the possibility
of a preprocessing of the environment map in such a way that we can compute refractions with
the same algorithmic machinery for reflections (see for example [13] and [12]). The essential
operation, then, is to invert the environment map. For instance, in a cubic environment map
the up and down faces must be swapped, and the six faces must undergo a vertical inversion
(see figure 5).

The operation My, however, mirrors with respect to the zy plane, which is perpendicular
to the z axis (defined as the optical axis of the system). Then, the optical axis must be parallel
to the z axis of the world coordinate system, otherwise further preprocessing will be needed.
This preprocessing can be described mathematically as a coordinate system change, where the
z axis of the new system is aligned so that s, is given by equations 3, but computing it with
vectors a and s previously rotated with a rotation transformation Ry, .

PROCEDURE 1 To compute a refracted ray s’ as a by-product of a reflected ray s, computation,

1. Rotate vectors a and s with a rotation transformation Rg , ,, where 0, ¢, o are the Euler
angles of the rotation [4].

2. Compute reflected ray s, from rotated a and s, following equations 3.

3. Compute refracted ray s’ as

' _p-1 Lo
s _R&%U Myy - sp.,

-1

where R, oo = R_y _, —, is the inverse rotation transformation.
b b

It can be shown that procedure 1 defines a mirror operation Mz about a generic plane. This
plane is specified by its unary normal W, which is equivalent to determining the rotation with its



Figure 6: Complex object approximation as multiple lenses.

Euler angles [10]. This means that complex objects can be approximated as a superpositon of
lenses, and that the associated refraction calculations can be easily computed as a composition
of several My opperations (see figure 6).

7 Conclusions and further work

A new and inexpensive model for shape approximations of generic objects was presented. The
model approximates the shape of a generic object as a lens. Then, the optical (exact) expressions
were derived. Since these resulted in costly computations, a Gaussian (paraxial) approximation
was developed. Blinn-Newell approximation for accelerated computation was also discussed,
leading to an overall adequate model, which is computationally inexpensive.
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