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Abstract. The multi path method is a Monte Carlo technique that solves the ra-
diosity problem, i.e. the illumination in a scene with diffuse (also called lambertian)
surfaces. This technique uses random global lines for the transport of energy, con-
trary to the classic Monte Carlo techniques, in which the lines used are local to
the surface where they exited from. The multi path technique borrows results from
Integral Geometry to predict the correct transfer of energy, and can be shown to
be a random walk method, in which a geometric path corresponds to several logical
paths.

We will study in this paper the application of quasi-Monte Carlo sequences to
the random sampling of the global lines. Important improvements in the efficiency
of the multi path method for certain sequences will be demonstrated. Alternative
ways of generating global lines will also be studied in the context of quasi-Monte
Carlo.

1 Introduction

The multi path method for radiosity is described in [SPNP96]. It is a member
of a family of methods called by different authors global Monte Carlo, global
Radiosity or transillumination methods [SPP95,SKFNC97,Neu95]. They use
random global lines (or directions) to simulate the transport of energy, and
in this way to compute the radiosity.

The global lines are independent of the surfaces or patches in the scene, in
contraposition to local lines, used in the classic methods, which are dependent
on the patches they are cast from. The global lines can take advantage of all
the intersections with the scene. However a problem arises here. The random
sequences used to generate the lines have a high discrepancy [Nie92]. This is
inherent to all Monte Carlo methods. We have tried to avoid this problem
by using quasi-Monte Carlo (¢MC) low discrepancy sampling, that is, low
discrepancy sequences (lds).

We will start with a brief review of the previous work. Then, in Sect. 3,
we will consider different ways to produce random global lines. In Sect. 4,
gMC sampling applied to multi path method will be discussed. Next we will
present some results, and end with the conclusions and future work.



2 Previous Work

2.1 The Radiosity System of Equations

The radiosity equation [CW93] solves for the illumination in a diffuse envi-
ronment. It can be written in the form

B(z) = E(z) + R(z) /S B(x')V(m,x')Mda(m') (1)

r

where

— B(z) is the radiosity

— E(z) is the emittance

— R(z) is the reflectance

— & is the set of surfaces that form the environment

— x, 2’ are points on surfaces of the environment

— do(z') is an area differential at point z’

r is the distance between z and z'

V(z,z') is a visibility function equal to 1 if z and 2’ are mutually visible
and 0 otherwise. The computation of this function is the main source of
cost solving the equation

0,0 are the angles the normals at z, 2’ form with the line joining them

V(z,z' )% is the differential form factor between z and z'.

To solve the radiosity equation we can use a finite element approach,
discretising the scene in patches and considering radiosities, emissivities and
reflectances constant over the patches. For every patch we have the following
equation, obtained from the discretisation of equation (1) [CW93].

B; = E; +RiZFz'ij (2)
J

where

— B; is the radiosity of patch 4, the flux of energy per unit area that leaves
patch i (W/m?)

— E; is the emittance of patch 4, the flux of energy per unit area that emits
patch i (W/m?)

— R; is the reflectance of patch ¢, the fraction of energy that is reflected by
patch ¢

— Fj; is the form factor from patch ¢ to patch j, that is, the fraction of
energy that leaving patch ¢ lands directly on patch j, defined [CW93] as
the integral
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Considering the solid angle w and the relation dw = %m—’l we can
rewrite the integral [CW93] as

F;j = 1// Vij(w, z)cosbdo (x)dw (4)
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where we integrate on the hemisphere (2 and on the patch ¢ (Fig. 1). V;;(w, z)
is 1 if patch j is visible from point z in direction w.
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Vij=0

L2

patchi

Fig. 1. Monte Carlo integration of the form factors

Thus we have a system of equations (2), with as many equations as patches
in the scene. Our target will be to solve this system. The most expensive part
is the computation of form factors. form factors only depend on the geometry
of the scene.

Basically we have two ways to solve the radiosity system of equations:

— Computing explicitly the form factors, either the full matrix or a row at
a time, to solve by numerical methods the system of equations.

— Simulating the exchange of energy between the patches, using i.e. a ran-
dom walk. In this case the transition probabilities used will be the (un-
known) form factors.

In the second approach, the form factors (4) are simulated using an im-
portance sampling scheme with pdf f(w,z) = % [Sbe97b]. Thus, lines are
cast from each patch, according to this density. This approach is called local
(Fig. 2a).

An alternative scheme is to use a global density of lines in the sense
of Integral Geometry, that is, homogeneous and isotropic [Sbe93,San76]. It
can be shown [Sbe97b] that this global density submits on each patch the
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Fig. 2. (a) Local approach: lines are casted from each patch, and energy is transfered
only to nearest intersected patch (b) Global approach: lines are independent of the
patches, and all intersections are used to transfer energy bidirectionally

above considered importance sampling density. An important advantage of
this approach in front of the local one is that each line segment can be used
to transfer energy bidirectionally, (Fig. 2b). This is used by the multi path
algorithm, explained in next section.

2.2 The Multi Path Algorithm

The multi path method exposed in [SPNP96] shows that it is possible to
simulate a random walk using a global density of lines. This global density
submits on each patch a local density according to the importance sampling
seen in Sect. 2.1, using all line intersections to transfer energy bidirectionally.

We will briefly review the algorithm. Each global line will simulate the
exchange of flux of energy between several pairs of patches. In this way, every
global line contributes to several geometric paths (Fig. 3a).

~
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Fig. 3. (a) multi path method. A global line (the thick one) simulates two geometric
paths, indicated with the continuous stroke and the dashed stroke (b) multi path
method. A geometric path can contribute to the emission of power from several
patches. In the figure, geometric path 1-2-3-4 simulates paths 1-2-8-4, 2-3-4 and
3-4. This is similar to the covering paths [Rub81]




Global lines are intersected with the scene. For each line the intersections
are sorted by distance in an intersection list. Each patch (if not a source) has
with it two quantities. One records the flux of energy accumulated, the other
one is the unshot flux of energy. For every pair of patches along the inter-
section list, they exchange their unshot energies, decreased by the respective
reflectances, and moreover they add to their accumulated energy the unshot
energy of the other patch (also decreased by the reflectance). If a patch is
a source, we keep also a third quantity, the emitted energy per line exiting
the source. Thus, if one of the patches of the pair is an emitter patch, we
must add this emitted energy per line to the unshot energy. This “emitted
per line” energy is computed in the following way: given the number of the
lines we are going to cast, we compute for any light source patch beforehand
the forecast number of lines passing through it. This number is, for a planar
patch, proportional to the area of the patch [San76]. The division of the total
source energy by this number gives the predicted energy of one line.

There are three main advantages in the multi path method. The two first
ones are the use of all intersections of a line and the bidirectionality of energy
transfer. The other main advantage is that each path is used to transport
different logical paths (see Fig. 3b), as with the covering paths [Rub81].

A drawback of the multi path method, due to its global nature, is that
in first stages the distribution of power is only possible from light sources,
and so most of the lines cast in these first stages (the lines that do not cross
any light source) are wasted. To avoid this behaviour and gain in efficiency a
preprocess, called first shot, is done [SPNP96,Sbe97a], in which the power is
cast from the source patches in a local way. After that, the patches that have
received some power will be the new sources instead of the original ones. Note
that after this preprocess the power to be emitted is more widely distributed,
decreasing the initial waste in global lines and thus becoming the multi path
method much more efficient.

A comparison of the multi path method against the classic (local) methods
can be found in [Sbe97b] and [SPNP96].

2.3 Random sampling of a Global Uniform Density of Lines

There are several methods to generate a uniform density of lines in a scene.
The guideline is that the line density has to correspond to the form factor
density, the integrand of (3) or (4) without the visibility function. Now we
will comment some of them [Sbe97b,San76,S0178]:

e Pairs of random points on a bounding sphere.
In [San76] it is shown that a density of global lines intersecting a convex
body is given by C"sar%aldada’ , where 0,6' are the angles of the inter-
secting line with the normals in the intersecting points, do,do’ are the
area differentials in the same points and r is the length of the chord. If
the convex body is a sphere (see Fig. 4a), the density becomes simply



(save a constant factor) dodo’. That is, taking pairs of uniform random
points on the sphere surface we obtain a global uniform density of lines.

(a) (b)

Fig. 4. (a) Random sampling from pairs of points on a sphere (b) Random sampling
using lines from the walls in a convez bounding box

e Lines from the walls of a convex bounding box
We can transform the density in a) into cosfdw (see 2.1). This new ex-
pression means that taking a uniform random point on the surface of
the convex bounding box and a cosinus weighted uniformly distributed
direction (Fig. 4b) we obtain the same global uniform density of lines as
in a). Since this result is valid for any convex bounding box, it is useful
to use the bounding box of the scene (if convex) to generate the lines.
An advantage of casting the lines from the walls in front of using a bound-
ing sphere is that no lines are wasted, because all the lines intersect the
scene.

¢ Maximum circle.
We sample a uniform random point on the surface of the bounding sphere
(in fact, this is the same as sampling a uniform random direction). Then
we take the circle orthogonal to this direction that contains the centre
of the sphere (that is, a maximum circle). Finally, we sample a uniform
random point on this circle. With this point and the direction, we have
the global line (Fig. 5a). Note that this is equivalent to selecting a tangent
plane (thus a point in the sphere) and a point in the projection of the
sphere onto the plane.

e Tangent planes: bundles of parallel lines
A last way to get random lines is using tangent planes. We must sample
tangent planes to the sphere. To do this, we sample a uniform random
point on the surface of the sphere, and then we construct the tangent
plane at this point. For every plane we cast bundles of parallel lines
orthogonal to the plane (Fig. 5b). Note that here the main point is the
use, for each sampled direction, of bundles of parallel lines instead of a
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Fig.5. (a) Random sampling using mazimum circle (b) Random sampling using
tangent planes

single line like in the previous case. To avoid lines always passing by the
center of the scene, the plane is randomly jittered.

This technique offers several possibilities. An important point to consider
is the balance between the number of directions and the number of lines
per direction. On the other hand, the intersection of the lines with the
scene can be accelerated in some ways, for instance by applying z-buffer
techniques.

e Non uniform densities.

To end this section we present a couple of generation techniques that,
although they seem to be uniform, they are not. The first one is us-
ing pairs of uniform random points from the surface of a non spherical
convex bounding volume (Fig. 6a), thus it amounts to take a density
proportional to dodo’. But this density is incorrect in general because
the factor %2059’ in the uniform density only becomes constant for the
sphere, as seen in the first point. Remember here that in the second point
we took a point and a direction instead of two points.

The second one is using two parallel planes that surround the scene.
Thus, if we sample one uniform random point on each plane, the lines
that we get do not produce uniform distribution. The correct density

should be proportional to %g‘maldada’ , the one taken is proportional
cos flcos '

to dodo’. The ratio is thus proportional to cos2= . Now, from Fig. 6b,
cosf = cosf' = 4, and the ratio is proportional to . This means that for
twice the distance we cast 24 more lines than necessary. In other words,

much more lines are cast in oblicuous directions that in orthogonal ones.

2.4 Quasi-Monte Carlo low discrepancy sampling

The main idea of using quasi-Monte Carlo low discrepancy sampling is to re-
duce the discrepancy of the sets of points. Intuitively, we can see the discrep-
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Fig. 6. (a) Sampling lines from pairs of points on a bounding box we do not get a
uniform distribution (b) Parallel planes

ancy as a measure of how far is a set of points from the uniform distribution.
A more formal and extensive definition of discrepancy can be seen in [Nie92].
If we look at Fig. 7 we can see on the left a set of 1000 2D points generated
with a simple Monte Carlo generator, while on the right side the points have
been generated using a quasi-Monte Carlo generator. We can easily see that
the points on the right are closer to the uniform distribution that the ones
on the left side. It seems that the points on the right have been generated
“trying to fill empty spaces”. In this case we usually talk of low discrepancy
sequences (lds) of points.
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Fig. 7. (a) Monte Carlo random sampling (1000 points) (b) Quasi-Monte Carlo low
discrepancy sampling (1000 2-dimensional Halton points, using as basis 2 and 8)

The gMC low discrepancy sampling produces sequences of k-dimensional
points that in fact are obtained in a deterministic (that is, non-random) way.
There exists a lot of different qMC sequences: Halton, Sobol, Niederreiter,
Hammersley and others. Some of them are described with detail in [Nie92].



On the other hand, these sequences have been applied to the Monte Carlo
methods for radiosity by several authors, obtaining in general satisfactory
results. Now we review some of them:

[Kel96b] applies gMC techniques to the computation of the radiosities by
using a quasi-Random Walk, obtaining a noticeable improvement with Hal-
ton sequences. This quasi-Random Walk uses an equal absorption probability
for all patches, thus all patches are of the same length. In [NNB97] a new
algorithm is presented that uses sets of rays (well distributed ray sets) con-
structed from Halton numbers and importance sampling. This algorithm is
suitable for complex scenes, in which gains of half an order of magnitude are
obtained. In [SKFNC97] Hammersley and scrambled Hammersley sequences
were used in combination with the transillumination method to solve the
radiosity problem.

On the other hand, we can see in [Kel96a] an application of 1ds to the
computation of form factors, getting an speed-up of more than half an order
of magnitude. Here, Halton and Hammersley sequences are applied, obtaining
similar discrepancies with both. A different approach is presented in [Kel97].
The scene is not discretized in patches. This method is obtained directly from
the radiance equation and applies jittered low discrepancy sampling.

Next we will study how the different qMC sequences applied to the global
line generation can improve the multi path method.

3 Application of quasi-Monte Carlo Generators to the
multi path Method

In the Sect. 2.3, we have studied different ways to simulate the global uniform
density of lines that we need in the multi path method. The four presented
ways are indeed equivalent, they all produce the same density of lines. But
the interesting point is that they are equivalent only if we use Monte Carlo
random sampling. If we apply quasi-Monte Carlo sequences, the results could
be different. So we have applied some qMC sequences to the different tech-
niques, and we have compared the results obtained with each one.

Basically we have applied Halton sequences, as defined in [Pre94]. Halton
sequences use the representation of the numbers in basis b;, where b; is a prime
number. In fact, they are sequences of k-tuples, where k is the dimension.
Since each line needs 4 random values to be generated, k = 4. Thus, to get
a sequence of 4-tuples, we make each component a Halton sequence with a
different prime base. We have used the first 4 primes, namely 2, 3, 5 and 7.

Hammersley and Sobol sequences have also been used. In general, these
sequences have not improved the results, but, as we will see later, in some
cases have produced a very good performance.



4 Results

4.1 Mean Square Error

We have used mean square error (MSE) to establish a measure of the goodness
of every estimation. The MSE is given by the next formula:

Zi A;

where A; is the area of patch i, B; is the estimate value for its radiosity and
B; is the exact value. We obtain these reference values by running a multi
path algorithm in which we cast tens of millions of lines. We have used as
scene a cubical room with a table, four chairs around the table and a cube
on it, and finally a light source near the ceiling. From now on, we will refer
to this scene as “4CHAIRS”.

We have compared a series of executions using Monte Carlo random sam-
pling with five different qMC techniques: Four of them correspond to the
application of Halton sequences, using 2,3,5 and 7 as basis, with the four
techniques seen. In one case, sampling 2 points on the surface of the sphere,
we have also obtained very good behaviour using Sobol sequences.

MSE = (5)

4.2 Asymptotical Behaviour of the Error

Table 1. Asymptotical behaviour of the MSE. Scene 4CHAIRS

METHOD SLOPE IN JCHAIRS
MONTE CARLO -1.00
2 POINTS ON THE SPHERE (SOBOL) |-1.12
LOCAL FROM THE WALLS (HALTON)|-1.04
MAXIMUM CIRCLE (HALTON) -1.02
TANGENT PLANES (HALTON) -0.96

As is well known, in Monte Carlo the expected value of the mean square
error decreases as % This means that, if we take logarithms, the graph MSE
vs. number of lines must be linear with slope -1. This is its asympthotical
behaviour. Then, if we consider quasi-Monte Carlo low discrepancy sampling,
we can expect a better behaviour, namely, a slope minor than -1 [SKFNC97].
We have studied the asymptotical behaviour of MSE in the scene 4CHAIRS,
and the results are showed in Table 1 (they have been calculated by means of
linear regression). There we have a result of -1 (as expected) in Monte Carlo,
and, in general, values slightly lower than -1 in gMC. In Fig. 8 we have the
log-log graph, in which we can observe the lower MSE and the slightly steeper
slope (except in tangent planes technique) using qMC sequences. This means
that there is not a clear gain in the asymptotical behaviour using ¢qMC but
a smoother convergence is obtained.
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Fig. 8. Scene JCHAIRS. Log-log graph. MSE (in vertical azis) vs. number of lines

It is important to remark that, in each technique, we have choosen the
gMC sequence that has produced better results (between Halton and Sobol
sequences).

We have also studied the asymptotical behaviour in a more complex scene,
called OFFICE, that has about 36000 patches. In this case we compare Monte
Carlo random sampling with several Halton low discrepancy sampling. To get
more accurate results, several executions have been done and the average of
the errors has been computed.

We can observe the log-log graph (Fig. 9) in which we have plotted
log(execution time) versus log(MSE). The important point is that in the
right side of the graph, the error obtained with the three qMC techniques
(corresponding to the methods a), b) and c) seen in 2.3) is clearly lower than
the error obtained using Monte Carlo sequences. As previously commented
in the scene 4CHAIRS, the slope obtained using gMC is only slightly steeper,
but a smoother convergence is observed.

If we compare our results with the ones obtained in [Kel96a], we find
a lesser speed-up in ours. It can be due to the totally different nature of
the method in [Kel96a]. It is also possible that there are some correlation
problems produced by the fact that, in the multi path method, a global line
transports several interreflection orders.

4.3 Images

We can see some of the obtained images in Fig. 10. Here we have generated
the global lines from pairs of points on the surface of the sphere. It is quite



4 T T T T T T 7

"monte_carlo" <—
"2_points_on_the_sphere" -+--
+ "2_points_on_the_walls" -&--
38 E\:‘.\\ x . "maximum_circle" x|

36

34 r

32

28 |

26 ! ! ! ! ! !
2 22 24 2.6 28 3 3.2 3.4

Fig.9. Scene OFFICE. Log-log graph. MSE (in vertical azis) vs. time (seconds)
obtained in a SUN UltraSparc

clear that, using the same number of rays, the obtained images are better
using quasi-Monte Carlo. In particular, we can observe that the noise effect
is much more reduced in quasi-Monte Carlo.

5 Conclusions

The multi path algorithm [SPNP96] is a Monte Carlo method to compute the
radiosities of the patches in a scene. This algorithm uses uniform densities of
lines, that deal with the transport of energy between the patches or polygons
in the scene. In this paper we have reviewed some methods to produce this
uniform density of lines. We have applied to them the quasi-Monte Carlo
low discrepancy sampling. We have seen that qMC gives a lower error than
Monte Carlo, that is, it needs less lines to get the same accuracy. In general, no
important differences have been found between the different gqMC sequences
that we have tested. We have also studied the asymptotical behaviour, and
concluded that the rate of convergence using qMC is not much faster than in
MC, but in gMC a smoother convergence is obtained.
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Fig. 10. (a) Monte Carlo random sampling. Number of lines = 266000 (b) Halton
low discrepancy sampling. Number of lines = 266000 (¢) Monte Carlo random sam-

pling. Number of lines = 532000 (d) Halton low discrepancy sampling. Number of
lines = 532000



