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Als germans László i Attila Neumann que estan sempre disposats a oferir
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Chapter 1

Introduction

Light is the source of all excellence.
Antoni Gaud́ı (1852–1926)

All parts of creation are linked together and interchange their influ-
ences. The balanced rhythm of the universe is rooted in reciprocity.
Paramahansa Yogananda, “Autobiography of a Yogi”, 1946

What does one do with information? What does one do with igno-
rance?
Murray Gell-Mann and Seth Lloyd [32]

In this thesis, information theory tools are applied to computer graphics in
order to quantify the complexity of a scene from the points of view of visibil-
ity and radiosity. In this chapter, we discuss a possible relationship between
radiosity, complexity and information theory. After that, our objectives and
motivations are presented. Finally, we give an overview of this dissertation.

1.1 Radiosity, Complexity, and Information

Theory

The three fundamental pillars of this thesis are radiosity, complexity, and infor-
mation theory:

Radiosity

One of the most important topics in computer graphics is the accurate com-
putation of the global illumination in a closed virtual environment (scene), i.e.
the intensities of light over all its surfaces. “The production of realistic images
requires in particular a precise treatment of lighting effects that can be achieved
by simulating the underlying physical phenomena of light emission, propaga-
tion, and reflection”[82]. This type of simulation is called global illumination
and is represented by the rendering equation [43], which is a Fredholm integral
equation of the second kind. However obtaining an exact representation of the
illumination is an intractable problem. Many different techniques are used to
obtain an approximate quantification of it [12, 82, 33].

9
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In this thesis, we deal with global illumination using the radiosity method,
which only considers diffuse surfaces, where reflected light does not depend on
the outgoing direction. The radiosity method consists of the following steps:
discretisation of the surfaces of the scene into a mesh of polygons called patches,
computation of form factors, solution of the system of linear equations, and
visualization of the solution [12, 82, 33]. The form factor Fij between patches
i and j expresses the fraction of energy leaving patch i which goes directly to
patch j, and it can be interpreted as the visibility between patches. The kernel
of the radiosity equation depends only on the visibility between the points or
patches of a scene, i.e., the geometry of the scene [34, 11, 12, 82, 33]. The main
problems of the radiosity method are meshing and form factor computation.
Scene meshing not only has to accurately represent illumination variations, but
it also has to avoid unnecessary subdivisions of the surfaces that would increase
the number of form factors to be computed, and consequently the computational
time. The best strategy tries to balance accuracy and computational cost. This
dissertation looks at these problems from an information-theory approach.

Complexity

In the last two decades, the study of complexity has become a very active re-
search area in many different fields (automata, information theory, computer
science, physics, biology, neuroscience, etc.) [3]. It is generally accepted that
“the problem of characterizing complexity in a quantitative way is a vast and
rapidly developing subject. Although various interpretations of the term have
been advanced in different disciplines, no comprehensive discussion has yet been
attempted”[3]. But, what is complexity? The definition found in Webster’s dic-
tionary summarizes in a few words the notion of complexity: “A complex object
is an arrangement of parts, so intricate as to be hard to understand or deal with”
(Webster, 1986).

From the points of view of visibility and radiosity, a scene (or the simulation
of the light propagation in it) shows typical characteristics of complex behaviour
[3]: “simultaneous presence of elements of order and disorder, some degree of
unpredictability, interactions between subsystems which change in dependence
on how the system is subdivided”. As we have seen, global illumination simu-
lates the interreflection of light between all the surfaces in an environment. The
difficulty in obtaining an accurate solution mainly depends on the degree of de-
pendence between all these surfaces. This dissertation introduces a complexity
measure called mutual information which quantifies the degree of interdepen-
dence or structure in a scene and which will be used to obtain new refinement
criteria.

Information Theory

Information theory deals with the transmission, storage and processing of in-
formation and is used in fields such as physics, computer science, mathematics,
statistics, economics, biology, linguistics, neurology, learning, etc. [15]. For in-
stance, it is applied successfully in areas closely related to computer graphics,
such as medical image processing (see for instance [95, 85, 64]) or computer
vision and robot motion (see for instance [94, 2]). Information is simply the
outcome of a selection among a finite number of possibilities [93]. The classical
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measure of information, Shannon entropy, expresses the information content or
uncertainty of a random variable. It is also a measure of the variation, dis-
persion, or diversity of a probability distribution of observed events. Another
measure, mutual information, expresses the information transfer in a commu-
nication channel. It is also a measure of the dependence or correlation between
two random variables. Both measures capture different aspects of the complex-
ity of a scene: entropy measures its degree of randomness or uncertainty and
mutual information quantifies its degree of structure or correlation 1.

1.2 Objectives and Motivations

This thesis aims to quantify the complexity of a scene and to obtain new criteria
of refinement for visibility and radiosity. Mutual information and entropy are
used to reach these objectives.

But, how can we apply information theory to the study of a scene? Basically,
because a scene contains information which is exchanged between its different
parts (points or patches), thus creating a dependence or correlation between
them. “When a photon is emitted from a light source and then strikes an
object, that photon has effected the transfer of some information. Minimally, it
represents that a certain amount of energy of a specific quantity and quality has
been transferred from one object to the other. But as we have seen, it also tells
us something about the relative visibility of the two points, and the amount of
impact that the light source will have on the final image” [33]. In this thesis, a
scene will be analyzed from an information-based point of view, and we consider
that information is a purely probabilistic concept. Obviously, the visibility and
radiosity of a scene depends on its structure. Thus, for instance, the variation of
the position of the objects of a scene changes the degree of interaction among all
the parts of the environment, and consequently the information transfer between
these parts also varies.

In relation to the requirements of the radiosity method this dissertation
contributes in the following areas:

• Scene classification according to two different and complementary com-
plexity measures, randomness (entropy) and correlation (mutual infor-
mation), which quantify how difficult it is to compute the visibility and
radiosity in a scene.

• Evaluation of the goodness of a particular discretisation and, consequently,
also of the strategy used to obtain it.

• Obtaining new refinement criteria based on the information transfer in a
scene.

In conclusion, this thesis studies scene visibility and radiosity from an infor-
mation-theory standpoint and shows the feasibility of using information theory
in dealing with a scene. To end this introduction, it is worth remembering
Glassner’s words in the last chapter of Principles of Digital Image Synthesis:

1Although we consider that entropy and mutual information express different perspectives
of the complexity of a scene, entropy will be referred to as scene randomness and mutual
information as scene complexity (see chapter 4).
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“There has not been much attention paid to applying information theory to
image synthesis. I think that it holds promise, though, and may help us design
new types of efficient rendering algorithms”[33]. This work is a first step in
the application of information theory to global illumination. In the same way
that information theory has been applied successfully in many other areas, we
sincerely hope that information theory in global illumination will also be of
service.

1.3 Overview

This dissertation is organized into the following chapters:

• Chapter 2: Previous Work

Basic concepts of the radiosity method, information theory, and complex-
ity are reviewed.

• Chapter 3: Scene Visibility Entropy

A discretised scene is represented by a discrete information channel. This
fact enables us to apply the definitions of entropy and mutual information
to the study of the scene visibility. The relationship between entropy and
Monte Carlo error in the form factor computation is shown.

• Chapter 4: Scene Visibility Complexity

We first analyze the concept of scene complexity. Then, the continuous
mutual information is proposed as the scene visibility complexity, and the
discrete mutual information as the visibility complexity in a discretised
scene. Continuous mutual information integral is solved by Monte Carlo
integration and it is computed efficiently by casting uniformly distributed
global or local lines. The difference between continuous and discrete mu-
tual information will enable us to evaluate the goodness of a given dis-
cretisation. Finally, we present a tentative scene classification in flatland.

• Chapter 5: Scene Radiosity Entropy and Complexity

To study the complexity of a scene with illumination, we need to find an
analog of the form factor matrix for the radiosity setting. An analogy
appears naturally when the null variance probability transition matrix
is considered. Similarly to the two previous chapters, the entropy and
mutual information of a scene are defined by using both discrete and
continuous Markov chains. A general proposition, which can be applied
to visibility, radiosity, and importance, provides us with the increase in
mutual information transfer when a patch is refined.

• Chapter 6: Refinement Criteria for Visibility and Radiosity

From an information theory point of view, we know that between different
discretisations of the same scene the most precise will be the one that has
a minimum loss of information transfer. This proposal provides the basis
for dealing with the discretisation error and for introducing some criteria
of refinement applied to visibility and radiosity.
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• Chapter 7: Conclusions and Future Work

The conclusions and the main contributions of this thesis are presented,
as well as some indications about our current and future research.



Chapter 2

Previous work

As stated in the introduction, this thesis deals with the application of informa-
tion-theory concepts to the study of the complexity of visibility and radiosity in a
scene. We review next the radiosity method, the basic definitions of information
theory, and the different perspectives of the complexity of a system.

2.1 Radiosity Method

The radiosity method, first introduced in [34, 56, 11], solves the problem of
illumination in an environment of diffuse surfaces. In this section, we look at
the radiosity equation, the form factor computation and some refinement criteria
for hierarchical radiosity.

2.1.1 Rendering Equation

(a) (b)

Figure 2.1: Two different illuminated scenes.

The light transport in a virtual closed environment or scene (Figure 2.1)
is described by the rendering equation [43], which is a second-order Fredholm
integral equation. This equation, which describes all energy exchanges between

14
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surfaces, gives us the distribution of light at every point of a scene:

L(x, ωx) = Le(x, ωx) +

∫

S

ρbd(x, ωx,−ωy→x)L(y, ωy)G(x, y)dAy (2.1)

where

• S is the set of surfaces that form the environment

• x and y are points on S

• dAy is a differential area at point y

• ωx is a given outgoing direction at point x and ωy→x is the outgoing
direction at point y towards point x (ωy→x can also be seen as an incoming
direction at point x coming from point y) (Figure 2.2)

x

y

θy

θx

rxy

xN

Ny

ω

ω

x

y x

Figure 2.2: Outgoing and incoming directions at point x.

• L(x, ωx) is the radiance at point x in direction ωx (radiance can be defined
as the power arriving at or leaving from a surface per unit solid angle and
per unit projected area, W

sr.m2 ) and L(y, ωy→x) is the radiance at point y
in direction ωy→x

• Le(x, ωx) is the emitted radiance at point x in direction ωx

• ρbd(x, ωx,−ωy→x), with units sr−1, is the bidirectional reflectance distri-
bution function (BRDF) at point x, which is the ratio between the out-
going radiance at x in direction ωx and the incident radiant flux density
(irradiance, W

m2 ) at x from direction ωy→x (Figure 2.3a)

• G(x, y) is the geometric kernel, equal to
cos θx cos θy

r2
xy

V (x, y), where θx and

θy are the angles that the line joining x and y form with the normals at x
and y respectively, rxy is the distance between x and y, and V (x, y) is a
visibility function which is equal to 1 if x and y are mutually visible and
0 if not
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(a) (b)

Figure 2.3: (a) Bidirectional reflectance distribution function. (b) Diffuse re-
flectance.

This equation can be presented in slightly different forms (global illumination
equation, radiance equation)[82, 33]. Observe that “the radiance distribution L
is described implicitly, so we know what conditions it must satisfy, but we don’t
know what it actually is”[33].

2.1.2 Continuous Radiosity Equation

For diffuse surfaces, the BRDF does not depend on the outgoing and incoming
directions. Thus, the outgoing radiance L(x, wx) and the self-emitted radiance
Le(x, wx) are also independent of the outgoing direction (Figure 2.3b). From
this simplification, the rendering equation for diffuse surfaces can be expressed
as

L(x) = Le(x) +

∫

S

ρbd(x)L(y)G(x, y)dAy (2.2)

If we integrate L(x) on the whole hemisphere Ωx of the outgoing directions wx

at point x, we obtain the total outgoing flux over the hemisphere per unit area,
called the radiosity at point x (power per unit area) [82, 33]:

B(x) =

∫

Ωx

L(x) cos θxdωx = πL(x) (2.3)

where dωx is the differential solid angle containing the direction ωx and θx is the
angle that the direction ωx forms with the normal at x. In addition, the total
self-emitted flux per unit area is expressed by E(x) = πLe(x), and is called the
emittance at point x.

Note that ρbd(x) is the ratio of outgoing radiance to incoming flux density.
A more convenient quantity is the ratio of reflected to incoming total flux,
which must be between 0 and 1 according to the energy conservation law (the
energy reflected must be a fraction of the energy received, the other fraction
is absorbed). This ratio is the diffuse reflectance, or simply reflectance, and is
given by ρ(x) = πρbd(x) (Figure 2.3b).

The radiosity equation is then obtained by multiplying both sides of equation
(2.2) by π:

B(x) = E(x) +
ρ(x)

π

∫

S

B(y)G(x, y)dAy (2.4)

where
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• B(x) and B(y) are, respectively, the radiosities at points x and y ( W
m2 )

• E(x) is the emittance or emitted flux of energy per unit area at point x
( W

m2 )

• ρ(x) is the diffuse reflectance at point x (dimensionless)

The radiosity equation can also be written in a directional form [82]:

B(x) = E(x) +
ρ(x)

π

∫

Ωx

B(y) cos θxdωx (2.5)

In this conversion, dωx =
cos θy

r2
xy

dAy has been used.

2.1.3 Discrete Radiosity Equation and Form Factors

To solve the radiosity equation we can use a finite element approach, discretising
the environment into np patches and considering the radiosities, emissivities and
reflectances constant over the patches (Figure 2.4).

(a) (b)

Figure 2.4: A scene with two different discretisations.

With these assumptions, the integral equation (2.4) becomes the system of
radiosity equations [34]:

Bi = Ei + ρi

np∑

j=1

FijBj (2.6)

where

• Bi, Ei, and ρi are respectively the radiosity, emittance (or emissivity),
and reflectance of patch i, and Bj is the radiosity of patch j

• Fij is the patch-to-patch form factor, only dependent on the geometry of
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the scene:

Fij =
1

Ai

∫

Ai

∫

Aj

G(x, y)

π
dAydAx

=
1

Ai

∫

Ai

∫

Aj

cos θx cos θy

πr2
xy

V (x, y)dAydAx

=
1

Ai

∫

Ai

∫

Aj

F (x, y)dAydAx

=
1

Ai

∫

Ai

∫

Ωx→j

cos θx

π
V (x, y)dωxdAx (2.7)

where Ai and Aj represent, respectively, the surfaces and also the areas of
patches i and j, x and y are, respectively, points on Ai and Aj , F (x, y) =
cos θx cos θy

πr2
xy

V (x, y) is the point-to-point form factor, and Ωx→j represents

the set of directions going from x to patch j

Form factor properties

Form factors have the following properties:

• Reciprocity
AiFij = AjFji ∀i, j (2.8)

• Energy conservation
np∑

j=1

Fij = 1 ∀i (2.9)

• Additivity
Fi(k∪l) = Fik + Fil (2.10)

where i, k, and l are three disjoint patches. In general the reverse is not
true

F(k∪l)i 6= Fki + Fli (2.11)

In fact, if the patch i is divided into ni subpatches, we obtain

ni∑

k=1

Aik
Fikj = AiFij (2.12)

As a direct consequence of this equation, if patch i is divided into ni

subpatches of equal area, we have

niFij =

ni∑

k=1

Fikj (2.13)

or

Fij =
1

ni

ni∑

k=1

Fikj (2.14)

In this case, Fij is the average of the form factors between the subpatches
of i and patch j.
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Differential-area-to-area form factor

The form factor integral (2.7) can be considered as an average over the area of
patch i of the inner integral. Thus, we have

Fij =
1

Ai

∫

Ai

FdAx,Aj
dAx (2.15)

where FdAx,Aj
is the differential-area-to-area form factor and is equal to

FdAx,Aj
=

∫

Aj

cos θx cos θy

πr2
xy

V (x, y)dAy

=

∫

Ωx→j

cos θx

π
V (x, y)dωx (2.16)

If patches i and j are very distant from each other, then we can assume that
FdAx,Aj

is constant over patch i. So, we can evaluate this integral only at a
point c (usually the center) of patch i, obtaining

Fij =
1

Ai

∫

x∈Ai

FdAx,Aj
dAx

≈ FdAc,Aj

1

Ai

∫

x∈Ai

dAx = FdAc,Aj
(2.17)

The differential-area-to-area form factor is also called point-to-patch form factor
and can be thought of as the limit of the patch-to-patch form factor when the
area of one of the patches decreases to zero [82]. We define Fj(x) ≡ FdAx,Aj

.

2.1.4 Radiosity Equation in Flatland

Visibility and radiosity in flatland have been studied in [40, 57]. The 2D con-
tinuous radiosity equation for the illumination in a diffuse environment can be
written in the form

B(x) = E(x) + ρ(x)

∫

L

B(y)
cos θx cos θy

2rxy

V (x, y)dLy (2.18)

where

• B(x), E(x), and ρ(x) at point x are, respectively, the radiosity, the emit-
tance, and the reflectance

• L is the set of segments that form the environment

• x and y are points on L

• dLy is a differential length at point y

• rxy is the distance between x and y

• V (x, y) is the visibility flag between x and y

• θx and θy are the angles which the normals at x and y form with the line
joining them
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• F (x, y) =
cos θx cos θy

2rxy
V (x, y) is the point-to-point form factor between x

and y

The discrete radiosity equation in flatland has the same form as the one for
the 3D case (2.6):

Bi = Ei + ρi

np∑

j=1

FijBj (2.19)

The form factor Fij is given by

Fij =
1

Li

∫

Li

∫

Lj

cos θx cos θy

2rxy

V (x, y)dLxdLy (2.20)

where Li and Lj represent, respectively, the segments i and j and also their
respective lengths, and x and y are, respectively, points on Li and Lj . The
form factors also fulfil the following properties:

LiFij = LjFji ∀i, j (2.21)
np∑

j=1

Fij = 1 ∀i (2.22)

2.1.5 Power Equation

Another form of the radiosity equation is the power equation, obtained by mul-
tiplying both sides of equation (2.6) by Ai and applying the reciprocity relation
(2.8):

Pi = Φi + ρi

∑

j

FjiPj (2.23)

where

• Pi = BiAi and Pj = BjAj are, respectively, the total powers emitted by
patches i and j (W )

• Φi = EiAi is the self-emitted power of patch i (W )

From this power equation, the form factor can also be physically interpreted
as the fraction of power leaving patch i which goes directly to patch j. More-
over, considering that light propagates in straight lines, we could give another
definition: the form factor is the fraction of lines that, exiting patch i, arrive at
patch j (see the next section).

2.1.6 Form Factor Computation

The form factor computation is the most costly step of the radiosity method.
More specifically, its cost is mainly due to the presence of the visibility term in
the geometric kernel.
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Analytical and deterministic numerical solutions

No analytical closed-form solution exists except for very simple shapes without
occlusions. Schroeder and Hanrahan [76] solved the polygon-to-polygon case.
In [81, 33] there is an extensive list of formulae for simple shapes. Here we only
review one of them: the form factor between two patches of the interior of a
sphere without occlusion, which is a paradigmatic case in our work 1.

From Figure 2.5, it can be easily obtained that the form factor Fij between

two spherical patches i and j is equal to
Aj

AS
, where AS is the area of the sphere.

As θx and θy are equal and cos θx

rxy
=

cos θy

rxy
= 1

2R
, where R is the radius of the

sphere, the expression for the form factor becomes

Fij =
1

Ai

∫

Ai

∫

Aj

cos θx cos θy

πr2
xy

V (x, y)dAxdAy

=
1

πAi

∫

Ai

∫

Aj

cos θx

rxy

cos θy

rxy

V (x, y)dAxdAy

=
1

4πR2Ai

∫

Ai

∫

Aj

dAxdAy =
Aj

AS

(2.24)

Note also that F (x, y) =
cos θx cos θy

πr2
xy

= 1
AS

in a spherical scene.

θ
θ

x

y

Ai

Aj

R
Rx

y

Nx

Ny

rxy
rxy/2

Figure 2.5: Geometry for the form factor between two spherical patches.

When occlusions between patches exist, we can use deterministic numerical
approximations to compute the form factors. Different methods can be found in
the literature [82, 33]: Wallace’s method, Nusselt’s analogy, hemi-cube method.

Monte Carlo integration

In this section, the form factor integral (2.7) will be evaluated by the Monte
Carlo method. So, we will give a brief overview of this technique. For a more
detailed description, see [44]. Also [82, 33, 4] review it and give different tech-
niques to sample a random variable.

1We will see in the next chapter that the interior of a sphere presents very special properties
from an information-theory point of view.
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Monte Carlo integration enables us to estimate integrals using random tech-
niques. Let us suppose we want to solve the integral of a function g(x). This
can be written as

I =

∫

D

g(x)dx =

∫

D

g(x)

f(x)
f(x)dx (2.25)

If f(x) > 0 (∀x ∈ D) and
∫

D
f(x)dx = 1, then f(x) can be considered as

a probability density function (pdf) of a random variable X and the integral

(2.25) can be read as the expected value of the random variable g(X)
f(X) with

respect to the pdf f(x):

I = Ef

[
g(X)

f(X)

]
(2.26)

The term g(x1)
f(x1)

, where x1 is obtained by sampling from the pdf f(x), is a

primary estimator for the integral I :

I ≈ Î =
g(x1)

f(x1)
(2.27)

This estimator is unbiased, i.e., the expected value of this estimator is the
value of the integral: E[Î ] = I . The variance of this estimator is given by

V [Î ] = E

[(
g(X)

f(X)

)2
]
−

(
E

[
g(X)

f(X)

])2

=

∫

D

g(x)2

f(x)
dx− I2 (2.28)

Averaging N independent primary estimators (obtained by sampling N inde-
pendent values x1, x2, . . . , xN from f(x)), we obtain the unbiased secondary

estimator ÎN

I ≈ ÎN =
1

N

N∑

k=1

g(xk)

f(xk)
(2.29)

with variance

V [ÎN ] =
1

N
V [Î ] =

1

N

(∫

D

g(x)2

f(x)
dx − I2

)
(2.30)

So, we obtain better estimators as the number of samples increases. This result
is according to the weak law of large numbers, which states that, for identically
independent distributed (i.i.d.) random variables, 1

N

∑N
k=1 Xk is close to its

expected value E[X ] for large numbers of N . Obviously the variance depends
on the pdf chosen. When we use a pdf that resembles the integrand we are
doing importance sampling, which can reduce dramatically the variance of our
estimator [44].

With respect to the variance, let us remember that the standard deviation
of X , which represents the error, is given by σ =

√
V [X ]. It can be observed

from (2.30) that σ decreases at a rate of 1√
N

as the number of samples increases.

The mean square error MSE of an estimator θ̂ of θ is given by

MSE(θ̂) = E

[(
θ̂ − θ

)2
]

(2.31)

and it is equal to the variance when the estimator is unbiased.
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Monte Carlo form factor computation

Three different ways of computing the patch-to-patch form factor Fij are here
reviewed (for a brief survey, see [4]). Uniform area sampling and uniformly
distributed local and global lines can be used to estimate the form factors:

• Uniform area sampling

To calculate the patch-to-patch form factor (2.7)

Fij =
1

Ai

∫

Ai

∫

Aj

cos θx cos θy

πr2
xy

V (x, y)dAxdAy

we take random points x and y on patches i and j respectively (Figure 2.6).
This means taking as pdf f(x, y) = 1

AiAj
, which is a uniform distribution.

A primary estimator F̂ 1
ij is given by

F̂ 1
ij =

1

Ai

F (x, y)

f(x, y)
=

1

Ai

F (x, y)
1

AiAj

= AjF (x, y) (2.32)

where (x, y) is a pair of random points. It is easy to see that this estimator

is unbiased (E[F̂ 1
ij ] = Fij) and its variance is given by

V [F̂ 1
ij ] =

∫

Ai

∫

Aj

(AjF (x, y))2
1

AiAj

dAxdAy − F 2
ij (2.33)

We can see that a strong singularity for abutting patches is produced due
to the term r4

xy in the denominator of the integrand. In this case, this
technique is not satisfactory, as the variance can be very high [4].

For N samples of pairs (x, y), the form factor integral is approximated by
the secondary estimator:

F̂ 1
ij = Aj

1

N

N∑

k=1

F (xk, yk) (2.34)

x
x

x
x5 x

3 5
y y y

y
4

4
3

A

Ai

j

12

2

y
1

Figure 2.6: Form factor Fij can be computed by taking random points on
patches i and j.
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• Uniformly distributed lines

– Local lines A local line is a ray with its origin uniformly distributed
on the surface of i and its direction distributed according to the cosine
with respect to the normal at the origin. So, we estimate the integral
(2.7)

Fij =
1

Ai

∫

Ai

∫

Ωx→j

cos θx

π
V (x, y)dAxdωx

taking as pdf f(x, wx) = 1
Ai

cos θx

π
.

An unbiased primary estimator F̂ 2
ij takes the value 1 if the local line

hits the patch j directly and 0 if not. Let us recall that if a random
variable X takes the values 1 and 0 with probabilities p and 1 − p,
its variance is given by V [X ] = p(1− p) [58]. Thus,

V [F̂ 2
ij ] = Fij(1− Fij) (2.35)

A secondary estimator for Fij is given by

F̂ 2
ij =

Nij

Ni

(2.36)

where Ni is the number of local lines with origin on i and Nij is the
number of local lines with origin on i that hit j. It shows clearly that
the form factor Fij can be interpreted as the fraction of local lines
with origin on i that have j as the nearest patch intersected (Figure
2.7a).

i

j

k

Fi j = 3/7 Fi k = 2/7

i

j

k

Fi j = 3/7 Fi k = 2/7 Fk j = 1/4

(a) (b)

Figure 2.7: Form factors can be computed with local (a) and global lines (b).

– Global lines

Global lines [72] can be generated by putting the scene within a
sphere and selecting pairs of random points on the surface of this
sphere. The lines connecting each pair of points are uniformly dis-
tributed throughout the scene. So, the form factor Fij can also be
considered as the probability of a global line that, crossing i, hits j
(Figure 2.7b). It can be shown that each line can contribute to the
computation of several form factors (Figure 2.8).

Also, it is important to note that, from integral geometry [71, 73],
the probability that, for a planar patch, a global line intersects patch
i is proportional to Ai.
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A secondary estimator for Fij is given by

F̂ 3
ij =

Nij

Ni

(2.37)

where Ni is the number of global lines which cross i and Nij is the
number of global lines that, crossing i, hit j. Its variance is

V [F̂ 3
ij ] =

1

Ni

Fij(1− Fij) (2.38)

To sample with global lines is equivalent to casting, for each patch,
a number of local lines proportional to its area.

Observe that the variance will be higher for smaller patches as Ni is pro-
portional to Ai. If we identify the lines connecting two patches with
visibility, the form factor gives us the visibility between patches [73].

θ

θ

θx1

θy
1
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y
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2
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2

Figure 2.8: Each segment of a global line contributes to the computation of two
form factors. Thus, the depicted line is used in four form factor computations.

2.1.7 Solution to the Radiosity Equation

The classic radiosity method consists of the following steps [12, 82, 33]:

• Discretise the environment into patches

• Compute the form factors Fij for each pair of patches i and j (form factor
matrix)

• Solve the system of linear equations

• Display the solution
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In this method, the input data are the geometric information about the scene
(for the form factors), the physical properties of the materials (for the emissiv-
ities and reflectances), and viewing conditions [82].

The radiosity equation (2.6), which refers to a single patch, can be expressed
as a system of np linear equations:




B1

B2

...
Bnp


 =




E1

E2

...
Enp


+




ρ1F11 ρ1F12 . . . ρ1F1np

ρ2F21 ρ2F22 . . . ρ2F2np

...
...

...
...

ρnp
Fnp1 ρnp

Fnp2 . . . ρnp
Fnpnp







B1

B2

...
Bnp




This linear system can be written in the form

B = E + RB (2.39)

where B and E are, respectively, the vectors of radiosities and emittances, and
R is the np × np matrix of the terms ρiFij . The solution B of such a system
can be written as a Neumann series. As ρi is strictly less than 1, the matrix R

has a norm 2 strictly less than 1. In this case, the Neumann series converges
and we can write the radiosity vector as a sum of an infinite series:

B = E + RE + R2E + · · ·+ RnE + · · · (2.40)

Since R represents the effect of one reflection on all the surfaces of the scene,
RnE can be interpreted as the radiosity obtained after n rebounds of the emitted
light through the scene.

In the literature, different iterative solution methods [82, 33] are available
to solve the radiosity and power systems: Jacobi relaxation, Gauss Seidel re-
laxation, Southwell relaxation, and also their respective stochastic versions
[80, 82, 54, 53, 55, 4].

2.1.8 Random Walks and Markov Chains

A discrete random walk [44, 70] is a Monte Carlo technique used to solve linear
systems of equations like (2.39). A random walk in a scene can be considered as
a Markov chain [13, 15, 52]. This is a discrete stochastic process defined over a
set of states S = 1, 2, . . . , n which is described by a transition probability matrix
P. In each step, the imaginary particle (or ray) makes a transition from its
current state i to a new state j with transition probability Pij . The transition
probabilities only depend on the current state. A Markov chain can also be seen
as a sequence of random variables Xk, k = 0 . . .∞, in which each Xk, k ≥ 1,
depends only on the previous Xk−1 and not on the ones before. The random
variables Xk indicate the probability of finding an imaginary particle in each
state i after k steps from an initial distribution given by X0.

Thus, for all i, j ∈ S, we have
∑n

j=1 Pij = 1. Also, if we are in state i,
the probability of being in state j after n steps is (Pn)ij or P n

ij . Under certain
conditions, which are met in the context of this dissertation, the probabili-
ties of finding the particle in each state i converge to a stationary distribution

2The norm of R can be defined by ‖R‖ = maxi(
�

j |rij |).
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w = {w1, . . . , wn} after a number of steps. The stationary or equilibrium prob-
abilities wi fulfil the relation wi =

∑n
j=1 wjPji and also the reciprocity relation

wiPij = wjPji.
A transition probability matrix is said to be aperiodic if it has no periodic

state [13]. A periodic state is a state that can be visited back by a path starting
from it only at multiples of a given period. A probability matrix is said to be
irreducible if there is always a path between any two states.

The form factor matrix F meets all the required conditions to be a valid
transition matrix of a random walk. The states of the random walk correspond
to the patches of a scene and np denotes the number of patches. In order to
determine the next state of a random walk, the form factors of the current patch
need to be sampled. Such sampling can be carried out easily without having to
compute the form factors explicitely [80, 60, 19, 74].

For the purpose of this thesis we are mainly interested in the following two
properties [73]:

1. If the form factor matrix F is irreducible and aperiodic, then we have

lim
m→∞

(Fm)ij →
Aj

AT

= aj (2.41)

for all the patches of a scene, where Aj is the area of patch j, AT =∑np

i=1 Ai, and aj is the relative area of patch j.

Thus, as the stationary or equilibrium distribution for a Markov chain is
defined as the limit of the mth power of the transition matrix when m
grows to infinity, if we know the areas of the patches, we also know the
stationary distribution a = {ai} of the random walk.

2. When the length of a random walk with transition matrix F grows to
infinity, the number of hits on any patch i becomes proportional to ai,
independently of where the random walk started its trajectory.

A Markov chain with a stationary distribution is called ergodic. Thus, the form
factors correspond to an ergodic Markov chain.

When the states form a countable set, as stated before, the Markov chain is
called a discrete chain. When the states are not countable, the chain is called
continuous. For instance, when taking infinitesimal areas dx at each point x on
the surfaces S of the scene as the states and differential form factors F (x, y), with
x, y ∈ S as transition probabilities, a continuous Markov chain with stationary
distribution w(x) = 1

AT
results.

It can be shown that in flatland the stationary probabilities of the resulting
discrete Markov chain are given by wi = Li

LT
= li, where LT is the total length

of all segments of the scene and Li is the relative length of segment i. When
taking infinitesimal lengths dx at each point x on the set of segments L of
the scene as the states and differential form factors F (x, y), with x, y ∈ L as
transition probabilities, a continuous Markov chain with stationary distribution
w(x) = 1

LT
results.

2.1.9 Importance Equations

Given a system of linear equations

x = Hx + a (2.42)
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we can always associate with it a family of adjoint systems

y = HT y + b (2.43)

where HT is the transpose of H.
The solutions x = (1−H)−1a and y = (1−HT )−1b fulfil < x,b >=< y, a >,

where <, > represents a scalar product.
The adjoint system corresponding to the radiosity equation (2.6) is given by

Ji = Wi +

np∑

j=1

ρjFjiJj (2.44)

This system can be solved with a shooting method, such as Southwell relaxation.
The adjoint system corresponding to the power equation (2.23) is given by

Ii = Vi +

np∑

j=1

ρjFijIj (2.45)

This system can be solved with a gathering method, such as Jacobi or Gauss-
Seidel relaxations. Multiplying both sides of this equation by Ai we obtain
(2.44), where Wi = AiVi and Ji = AiIi. The quantities Wi, Ji, Vi, and Ii are
called importances (see [83, 61, 62]).

2.1.10 Random Walk Radiosity

Monte Carlo literature describes methods to solve a system of linear equations
using a random walk [38, 70]. The basis of these methods is to consider each
unknown as an state and to build a random walk between the different states,
with transition probabilities related to the coefficients of the matrix of the sys-
tem. Two kinds of solutions are used: direct solutions, which build random
paths from the states of interest and only serve to evaluate those states, and
adjoint solutions, which begin at the states with the corresponding independent
term different to zero. In the radiosity setting, the direct solutions correspond
to gathering (from the patches) solutions, and the adjoint solutions correspond
to shooting (from the sources) solutions. As probability transition matrix we
usually take the form factor matrix [74, 4]. Other importance solutions are
obtained using different transition matrices than the form factor.

For instance, it can be found [75, 4] that in gathering random walk radiosity
the transition probabilities with null variance are

Pij =
ρiFijBj

Bi −Ei

(2.46)

and in shooting random walk radiosity the null variance transition probabilities
are given by

Pij =
ρjFijIj

Ii − Vi

(2.47)
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2.1.11 Hierarchical Radiosity

The classic radiosity method means the entire matrix of form factors has to be
computed before a solution can be obtained. This is the most costly step in
all the process. To manage the complexity of this problem, different strategies
can be used to reduce the number of form factors that need to be computed.
Obviously, we also have to take into account the accuracy of the solution. A
good strategy has to balance the reduction of the number of patches and the
precision of the illumination.

Some techniques have been introduced in order to reduce the computational
cost: progressive refinement, substructuring, adaptive refinement and hierar-
chical refinement. Other techniques try to reduce the number of form factors
arriving at a solution within a given error bound [82].

The hierarchical refinement algorithm was first introduced in [39] by Han-
rahan and Salzman. Additional information can be found in [82, 33]. This
algorithm is based on the objective of reducing the number of form factors
needed to propagate the light through the environment: “At the first this may
hardly seem possible; after all, the form factors describe the interaction of light
between pairs of surfaces. How can we delete any of them and still hope to get
an accurate solution?”[33]. Hanrahan and Salzman observed that the N -body
problem and the form factor problem were very similar. It is worth noting that
both problems are based on the interaction between all pairs of objects and also
that the gravitational force and the form factor have a similar mathematical
expression. The idea behind both problems is that “small details don’t matter
when we are far away from something” [33]. Thus, the clustering algorithms
of the N -body problem were applied to radiosity, resulting in the hierarchical
radiosity algorithm.

If each of the N particles exerts interactions on the other N − 1 particles,
thus there exist O(N2) interactions to account for. But two distant groups of
particles can be considered, in terms of interaction, as two single particles. In
hierarchical radiosity the particles are substituted by patches and these are sub-
divided into smaller elements if necessary, in order to achieve an accurate light
transport between them. The main objective is to obtain an accurate piecewise
constant approximation of the radiosity on all the elements. To do this, the
mesh is generated adaptively: when a constant radiosity assumption on patch
i is not valid for the radiosity due to another patch, the refinement algorithm
will refine i in a set of subpatches or elements. Finally, a multiresolution ele-
ment mesh will enable us to accurately represent the energy transport between
patches [33].

An oracle or refinement criterion, based on an error estimation, informs us
if a subdivision of the surfaces is needed. The oracle takes geometrical and vis-
ibility information about the patches and also the source radiosity and receiver
reflectance, and returns whether or not the interaction is valid. Some of them
will need further refinement, until a certain level where no further refinement
is needed or a previously imposed bound on the area of the patches is reached.
Its cost should not make the method prohibitive.

Bekaert et al. [5] have incorporated hierarchical refinement in Monte Carlo
radiosity (more specifically in stochastic Jacobi radiosity) by means of per-ray
refinement.
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2.1.12 Refinement Criteria

In this section, we review some refinement criteria for hierarchical radiosity
3. The cheapest and most widely-used oracle has been the power-based oracle
[39]. However, it leads to unnecessary subdivisions in smoothly illuminated
unoccluded regions receiving a lot of power. As an alternative, oracles based
on the smoothness of the geometrical kernel and the received radiosity have
been proposed [83, 35, 50, 59, 49, 6, 84, 41]. Nevertheless, oracles based on
kernel smoothness also have the problem of unnecessary subdivisions where the
kernel is unbounded, and the ones based on received radiosity rely on a costly
accurate computation of form factors. All in all, the additional cost invested
in both smoothness-based oracles, mainly through visibility computations, may
outweigh the improvements obtained [4].

The application of a good refinement criterion and strategy is fundamental
for the efficiency of the hierarchical refinement algorithm. Next we review some
oracles proposed in the past.

Oracle based on transported power

Hierarchical refinement radiosity was initially presented for constant radiosity
approximations by Hanrahan et al. [39]. A cheap form factor estimate Fij which
ignores visibility was used to measure the accuracy of an interaction from an
element j to an element i. If max(Fij , Fji) exceeds a given threshold ε, the larger
of the two elements i and j is subdivided using regular quadtree subdivision.
Otherwise, the candidate link is considered admissible.

Hanrahan et al. [39] also observed that the number of form factors can be
reduced considerably without affecting image quality by weighting the link error
estimates Fij with the source element radiosity Bj and receiver element area
Ai. Weighting with receiver reflectance ρi also further reduces the number of
links without deteriorating image quality. Thus, the power-based criterion to
stop refinement can be given by

ρiAiFijBj < ε (2.48)

Other strategies [87, 30] can also be used to reduce the number of form factors
by taking visibility information about candidate interactions into account. We
can see that power-based refinement criterion uses no information about the
variation of the received radiosity across the receiver element. This results, for
instance, in sub-optimal shadow boundaries and excessively fine refinement in
smooth areas. The main advantage of criterion (2.48) is its very low computa-
tional cost while yielding a fair image quality.

Oracle based on kernel smoothness

In order to improve on power-based refinement, the variation of the radiosity
kernel between a pair of elements is taken into account. In [83], the refinement
criterion is given by

ρi(F
max
ij − F min

ij )AjBj < ε (2.49)

3This section follows closely the discussion in [4]
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where F max
ij = maxx∈Ai,y∈Aj

F (x, y) and F min
ij = minx∈Ai,y∈Aj

F (x, y) are the

maximum and minimum radiosity kernel values 4 and are estimated by taking
the maximum and minimum value computed between pairs of random points
on both elements (Ai and Aj represent the surfaces of the elements), ε is a
predefined threshold, Bj is the source radiosity and ρi the receiver reflectivity.

A similar approach was used in [35] in order to drive hierarchical refinement
with higher-order approximations. When applied to constant approximations,
the refinement criterion is given by

ρimax(F max
ij − F av

ij , F av
ij − F min

ij )AjBj < ε (2.50)

where F av
ij = Fij/Aj is the average radiosity kernel value. Kernel variation is a

sufficient condition for received radiosity variation, but not a necessary condition
[4].

Oracle based on smoothness of received radiosity

Because bounding kernel variation is not a necessary condition for bounding
received radiosity variation, we can expect that hierarchical refinement based
on kernel smoothness will yield hierarchical meshes with more elements and links
than required. Optimal refinement can be expected by directly estimating how
well the radiosity Bj(x), received at x ∈ Ai from Aj , is approximated by a linear
combination of the basis functions on Ai, i.e., by estimating the discretisation
error directly.

This approach was first proposed by Lischinski et al. [50] for constant ap-
proximations. Pattanaik and Bouatouch [59] proposed a similar strategy for
linear basis functions. Other approaches are given in [49, 6, 84, 41]. The com-
putation cost of kernel and radiosity smoothness-based oracles has not yet been
found to compensate for the gain in mesh quality [4].

2.2 Information Theory

In 1948, Claude Shannon published “A mathematical theory of communica-
tion” [78] which marks the beginning of information theory. In this paper, he
defined measures such as entropy and mutual information 5, and introduced the
fundamental laws of data compression and transmission.

In this section, we present some basic concepts of information theory. A very
good reference is the text by Cover and Thomas [15]. Other main references
used in this thesis are Blahut [8] and Lubbe [88].

2.2.1 Entropy

In [78], after representing a discrete information source as a Markov process,
Shannon asks himself: “Can we define a quantity which will measure, in some
sense, how much information is “produced” by such a process, or better, at
what rate information is produced?”.

4In this thesis, point-to-point form factor F (x, y) is also referred to as the radiosity kernel
value.

5In Shannon’s paper, the mutual information is called rate of transmission.
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His answer is: “Suppose we have a set of possible events whose probabilities
of occurrence are p1, p2, . . ., pn. These probabilities are known but that is all we
know concerning which event will occur. Can we find a measure of how much
“choice” is involved in the selection of the event or of how uncertain we are of
the outcome?

If there is such a measure, say H(p1, p2, . . . , pn), it is reasonable to require
of it the following properties:

1. H would be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H should be a monotonic increasing

function of n. With equally likely events there is more choice, or uncer-
tainty, when there are more possible events.

3. If a choice is broken down into two successive choices, the original H
should be the weighted sum of the individual values of H . The meaning
of this is illustrated in Figure 2.9.

1/21/2

1/3

1/2 1/3 1/6

1/2
2/3 1/3 

1/6 

Figure 2.9: Grouping property of the entropy.

On the left, we have three possibilities p1 = 1
2 , p2 = 1

3 , p3 = 1
6 . On the

right, we first choose between two possibilities each with probability 1
2 ,

and if the second occurs, we make another choice with probabilities 2
3 , 1

3 .
The final results have the same probabilities as before. We require, in this
special case, that H( 1

2 , 1
3 , 1

6 ) = H( 1
2 , 1

2 ) + 1
2H( 2

3 , 1
3 ). The coefficient 1

2 is
because this second choice only occurs half the time.”

After these requirements, he introduces the following theorem: “The only H
satisfying the three above assumptions is of the form:

H = −K
n∑

i=1

pi log pi (2.51)

where K is a positive constant”. When K = 1 and the logarithm is log2,
information is measured in bits.

Shannon calls this quantity entropy, as “the form of H will be recognized as
that of entropy as defined in certain formulations of statistical mechanics where
pi is the probability of a system being in cell i of its phase space”. There are
other axiomatic formulations which involve the same definition of entropy [15].

The Shannon entropy is the classical measure of information, where informa-
tion is simply the outcome of a selection among a finite number of possibilities.
Entropy also measures uncertainty or ignorance.
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Thus, the Shannon entropy H(X) of a discrete random variable X with
values in the set S = {x1, x2, . . . , xn} is defined as

H(X) = −
n∑

i=1

pi log pi (2.52)

where n = |S|, pi = Pr[X = xi] for i ∈ {1, . . . , n}, the logarithms are taken in
base 2 (entropy is expressed in bits), and we use the convention that 0 log 0 = 0,
which is justified by continuity. We can use interchangeably the notation H(X)
or H(p) for the entropy, where p is the probability distribution {p1, p2, . . . , pn},
also represented by pi. As − log pi represents the information associated with
the result xi, the entropy gives us the average information or uncertainty of a
random variable. Information and uncertainty are opposite. Uncertainty is con-
sidered before the event, information after. So, information reduces uncertainty.
Note that the entropy depends only on the probabilities.

Some other relevant properties [78] of the entropy are

1. 0 ≤ H(X) ≤ log n

• H(X) = 0 if and only if all the probabilities except one are zero, this
one having the unit value, i.e., when we are certain of the outcome.

• H(X) = log n when all the probabilities are equal. This is the most
uncertain situation.

2. If we equalize the probabilities, entropy increases.

If we consider another random variable Y with probability distribution qi

corresponding to values in the set S ′ = {y1, y2, . . . , ym}, the joint entropy of X
and Y is defined as

H(X, Y ) = −
n∑

i=1

m∑

j=1

pij log pij (2.53)

where m = |S′| and pij = Pr[X = xi, Y = yj ] is the joint probability.
When n = 2, the binary entropy (Figure 2.10) is given by

H(X) = −p log p− (1− p) log(1− p) (2.54)

where p = {p, 1− p}.
Also, the conditional entropy is defined as

H(X |Y ) = −

m∑

j=1

n∑

i=1

pij log pi|j (2.55)

where pi|j = Pr[X = ai|Y = bj ] is the conditional probability.
The Bayes theorem expresses the relation between the different probabilities:

pij = pipj|i = qjpi|j (2.56)

If X and Y are independent, then pij = piqj .
The conditional entropy can be thought of in terms of a channel whose input

is the random variable X and whose output is the random variable Y . H(X |Y )
corresponds to the uncertainty in the channel input from the receiver’s point of
view, and vice versa for H(Y |X). Note that in general H(X |Y ) 6= H(Y |X).

The following properties are also met:
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Figure 2.10: Binary entropy.

1. H(X, Y ) ≤ H(X) + H(Y )

2. H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

3. H(X) ≥ H(X |Y ) ≥ 0

2.2.2 Mutual Information

The mutual information between two random variables X and Y is defined as

I(X, Y ) = H(X)−H(X |Y )

= H(Y )−H(Y |X)

= −

n∑

i=1

pi log pi +

m∑

j=1

n∑

i=1

pij log pi|j

=

n∑

i=1

m∑

j=1

pij log
pij

piqj

(2.57)

Mutual information represents the amount of information that one random vari-
able, the output of the channel, gives (or contains) about a second random vari-
able, the input of the channel, and vice versa, i.e., how much the knowledge
of X decreases the uncertainty of Y and vice versa. Therefore, I(X, Y ) is a
measure of the shared information between X and Y .

Mutual information I(X, Y ) has the following properties:

1. I(X, Y ) ≥ 0 with equality if, and only if, X and Y are independent.

2. I(X, Y ) = I(Y, X)

3. I(X, Y ) = H(X) + H(Y )−H(X, Y )

4. I(X, Y ) ≤ H(X)

The relationship between all the above measures can be expressed by the
Venn diagram, as shown in Figure 2.11.

The relative entropy or Kullback-Leibler distance between two probability
distributions p = {pi} and q = {qi}, that are defined over the set S, is defined
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H(X|Y) H(Y|X)

H(X,Y)

H(X) H(Y)

I(X,Y)

Figure 2.11: Venn diagram of a discrete channel.

as

DKL(p‖q) =

n∑

i=1

pi log
pi

qi

(2.58)

where, from continuity, we use the convention that 0 log 0 = 0, pi log pi

0 = ∞ if
a > 0 and 0 log 0

0 = 0.
The relative entropy is “a measure of the inefficiency of assuming that the

distribution is q when the true distribution is p” [15].
The relative entropy satisfies the information inequality DKL(p‖q) ≥ 0 ,

with equality only if p = q. The relative entropy is also called discrimination
and it is not strictly a distance, since it is not symmetric and does not satisfy the
triangle inequality. Moreover, we have to emphasize that the mutual information
can be expressed as

I(X, Y ) = DKL({pij}‖{piqj}) (2.59)

2.2.3 Entropy Rate of a Markov Chain

The joint entropy of a collection of n random variables is given by

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + . . . + H(Xn|Xn−1, . . . , X1) (2.60)

The entropy rate or entropy density of a stochastic process {Xi} is defined by

h = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

= lim
n→∞

H(Xn|Xn−1, . . . , X1) (2.61)

representing the average information content per output symbol 6 [15]. It is the
“uncertainty associated with a given symbol if all the preceding symbols are
known” and can be viewed as “the intrinsic unpredictability” or “the irreducible
randomness” associated with the chain [28].

In particular, a Markov chain can be considered as a chain of random vari-
ables complying with

H(Xn|X1, X2, . . . , Xn−1) = H(Xn|Xn−1) (2.62)

6At least, h exists for all stationary stochastic processes.
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An important result is the following theorem: For a stationary Markov chain,
with stationary distribution wi, the entropy rate or information content is given
by

h = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

= lim
n→∞

H(Xn|Xn−1)

= H(X2|X1) = −

n∑

i=1

wi

n∑

j=1

Pij log Pij (2.63)

where wi is the equilibrium distribution and Pij is the transition probability
from state i to state j.

Finally, the excess entropy or effective measure complexity [16, 36, 79, 86] of
an infinite chain is defined by

E = lim
n→∞

(H(X1, X2, . . . , Xn)− nh) (2.64)

where h is the entropy rate of the chain and n is the length of this chain. The
excess entropy can be interpreted as the mutual information between two semi-
infinite halves of the chain. “Another way of viewing this, is that excess entropy
is the cost of amnesia – the excess entropy measures how much more random
the system would become if we suddenly forgot all information about the left
half of the string” [27].

2.2.4 Important Inequalities

Some of the above properties can be deduced from the following inequalities
[15]. In addition, these will also play an important role in obtaining fundamental
results in this thesis.

Jensen’s inequality

A function f(x) is convex over an interval (a, b) (the graph of the function lies
below any chord) if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.65)

A function is strictly convex if equality holds, only if λ = 0 or λ = 1. A function
f(x) is concave (the graph of the function lies above any chord) if −f(x) is
convex.

For instance, x log x for x ≥ 0 is a strictly convex function, and log x for
x ≥ 0 is a strictly concave function [15].

Jensen’s inequality: If f is convex on the range of a random variable X , then

f(E[X ]) ≤ E[f(X)] (2.66)

where E denotes expectation. Moreover, if f(x) is strictly convex, the equality
implies that X = E[X ] with probability 1, i.e., X is a deterministic random
variable with Pr[X = x0] = 1 for some x0.

One of the most important consequences of Jensen’s inequality is the infor-
mation inequality DKL(p‖q) ≥ 0. Other previous properties can also be derived
from this inequality.
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Observe that if f(x) = x2 (convex function), then E[X2]− (E[X ])2 ≥ 0. So,
the variance is invariably positive.

The log-sum inequality

Log-sum inequality: If a1, a2, . . . , an and b1, b2, . . . , bn are non-negative numbers,
then

n∑

i=1

ai log
ai

bi

≥ (
n∑

i=1

ai) log

∑n
i=1 ai∑n
i=1 bi

(2.67)

with equality if and only if ai

bi
= constant.

Note that the conditions in this inequality are much weaker than for Jensen’s
inequality.

From this inequality, certain results can be derived:

1. DKL(p‖q) is convex in the pair (p, q)

2. H(X) is a concave function of p

3. If X and Y have the joint pdf p(x, y) = p(x)p(y|x), then I(X, Y ) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x)
for fixed p(x).

Data processing inequality

Data processing inequality: If X → Y → Z is a Markov chain, then

I(X, Y ) ≥ I(X, Z) (2.68)

This result demonstrates that no processing of Y , deterministic or random,
can increase the information that Y contains about X .

Fano’s inequality

Suppose we have two correlated random variables X and Y and we wish to
measure the probability of error in guessing X from the knowledge of Y . Fano’s
inequality gives us a tight lower bound on this error probability in terms of the
conditional entropy H(X |Y ) [15, 20]. As H(X |Y ) is zero if and only if X is a
function of Y , we can estimate X from Y with zero probability of error if and
only if H(X |Y ) = 0. Intuitively, we expect to be able to estimate X with a low
probability of error if and only if H(X |Y ) is small [15].

If X and Y have the joint pdf p(x, y) = p(x)p(y|x), from Y we calculate a

function g(Y ) = X̂ which is an estimate of X . Observe that X → Y → X̂ is a
Markov chain. The probability of error is defined by

Pe = Pr[X̂ 6= X ] (2.69)

Fano’s inequality:

H(Pe) + Pe log n ≥ H(X |Y ) (2.70)

where H(Pe) is the binary entropy from {Pe, 1− Pe}.
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This inequality can be weakened to

Pe ≥
H(X |Y )− 1

log n
(2.71)

Thus, Fano’s inequality bounds the probability that X̂ 6= X .

2.2.5 Entropy and Coding

Other ways of interpreting the Shannon entropy are possible:

• As we have seen in section 2.2.1, − log pi represents the information as-
sociated with the result xi. But − log pi can also be interpreted as the
surprise associated with the outcome xi. If pi is small, the surprise is
large; if pi is large, the surprise is small. Thus, the entropy

H(X) = −

n∑

i=1

pi log pi

is the expectation value of the surprise [27].

• Entropy is also related to the difficulty in guessing the outcome of a ran-
dom variable. Thus, it can be seen [15, 27] that

H(X) ≤ questions < H(X) + 1 (2.72)

where questions is the average minimum number of binary questions to
determine X . This idea agrees with the interpretation of entropy as a
measure of uncertainty and also with the next interpretation.

• A fundamental result of information theory is the Shannon source coding
theorem, which deals with the encoding of an object in order to store
or transmit it efficiently [15, 27]. “Data compression can be achieved by
assigning short descriptions to the most frequent outcomes of the data
source and necessarily longer descriptions to the less frequent outcomes”
[15]. For instance, Huffman instantaneous coding 7 is optimal and fulfils
the following theorems:

– Similarly to (2.72), we have

H(X) ≤ ` < H(X) + 1 (2.73)

where ` is the expected length of the optimal binary code for X .

– If we encode n identically distributed random variables X with a
binary code, the Shannon source coding theorem can be enunciated
in the following way:

H(X) ≤ `n < H(X) +
1

n
(2.74)

where `n is the expected codeword length per unit symbol. Thus, by
using large block lengths, we can achieve an expected codelength per
symbol arbitrarily close to the entropy [15].

7A code is called a prefix or instantaneous code if no codeword is a prefix of any other
codeword.
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– For a stationary stochastic process, we have

H(X1, X2, . . . , Xn)

n
≤ `n <

H(X1, X2, . . . , Xn)

n
+ 1 (2.75)

and thus, by definition of entropy rate h (2.61),

lim
n→∞

`n → h (2.76)

Thus, the entropy rate is the expected number of bits per symbol
required to describe the stochastic process.

In conclusion, the entropy of a random variable is a measure of the amount
of information required on average to describe it.

2.2.6 Continuous Channel

In this section, entropy and mutual information are defined for continuous
sources of information. For a continuous source X , messages are taken from
a continuous set S.

The entropy of a discrete set of probabilities p has been defined (2.52) as

H(X) = −

n∑

i=1

pi log pi (2.77)

Similarly, the continuous entropy of a continuous random variable X with a
probability density function p(x) is defined by

Hc(X) = −

∫

S

p(x) log p(x)dx (2.78)

In the same way, for two continuous random variables X and Y , the contin-
uous conditional entropy is defined as

Hc(X |Y ) = −

∫

S

∫

S

p(x, y) log p(x|y)dxdy (2.79)

and the continuous mutual information is defined as

Ic(X, Y ) =

∫

S

∫

S

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (2.80)

where p(x|y) and p(x, y) are, respectively, the conditional density function and
the joint density function associated with X and Y .

If we divide the range of the continuous random variable X into n bins of
length ∆, and we consider its discretised version X∆ (see [15]), it can be seen
that the entropy of a continuous random variable does not equal the entropy of
the discretised random variable in the limit of a finer discretisation [78, 15, 27]:

lim
∆→0

H(X∆) = Hc(X)− log ∆ (2.81)
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On the other hand, the mutual information between two continuous ran-
dom variables X and Y is the limit of the mutual information between their
discretised versions. Thus, when the number of bins tends to infinity:

lim
∆→0

I(X∆, Y ∆) = Ic(X, Y ) (2.82)

In addition, Kolmogorov [45] and Pinsker [63] defined mutual information as
I(X, Y ) = supP,QI([X ]P , [Y ]Q), where the supremum is over all finite partitions
P and Q. From this definition, two important properties can be deduced: the
continuous mutual information is the least upper bound for the discrete mutual
information and refinement can never decrease the discrete mutual information
[37]. This last property can also be deduced from the data processing inequality
(2.68) [37].

2.3 Complexity

The study of complexity has multiple directions or objectives, and also many
fields of application, which reflect the great activity in this area. In this section,
we review the concept of complexity and different ways to quantify it. This
summary is extracted from the works of Badii and Politi [3], Grassberger [36],
James Crutchfield’s group from the Santa Fe Institute (with David Feldman and
Cosma Rohilla Shalizi) [29, 28, 77], Murray Gell-Mann [32], Seth Lloyd [51], and
Wentian Li [48]. Other references are [97, 46].

2.3.1 What is Complexity?

Complexity is an active research area in many different fields. But, what is a
complexity measure? W. Li’s answer is: “The meaning of this quantity should
be very close to certain measures of difficulty concerning the object or the system
in question: the difficulty in constructing an object, the difficulty in describing
a system, the difficulty in reaching a goal, the difficulty in performing a task,
and so on” [48]. There are many definitions of complexity [3, 36, 48, 29, 1, 51]
corresponding to the different ways of quantifying these difficulties and “there
is not yet a consensus on a precise definition” [1].

“The concept of complexity is closely related to that of understanding, in so
far as the latter is based upon the accuracy of model descriptions of the system
obtained using condensed information about it” [3]. When defining complexity,
three fundamental points ought to be considered [3]:

• “Understanding implies the presence of a subject having the task of de-
scribing the object, usually by means of model predictions.”

• “The object, or a suitable representation of it, must be conveniently di-
vided into parts which, in turn, may be further split into subelements,
thus yielding a hierarchy. Notice that the hierarchy need not be manifest
in the object but may arise in the construction of a model. Hence, the
presence of an actual hierarchical structure is not an infallible indicator of
complexity.”

• “Having individuated a hierarchical encoding of the object, the subject is
faced with the problem of studying the interactions among the subsystems
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and of incorporating them into a model. Considerations of the interactions
at different levels of resolution brings in the concept of scaling. Does the
increased resolution eventually lead to a stable picture of the interactions
or do they escape any recognizable plan? And if so, can a different model
reveal a simpler underlying scheme?”

In this same direction, we recall that among the typical characteristics of com-
plex behaviour there are “simultaneous presence of elements of order and dis-
order, some degree of unpredictability, interactions between subsystems which
change in dependence on how the system is subdivided”[3]. Note that all these
requirements can be considered in a scene.

2.3.2 Complexity Measures

In this section we present a “non-exhaustive list” of complexity measures pro-
vided by Seth Lloyd [51]. This list is grouped under “three questions that
researchers frequently ask to quantify the complexity of the thing (house, bac-
terium, problem, process, investment scheme) under study”. In fact, “many
measures of complexity represent variations on a few underlying themes”:

• How hard is it to describe?8

Information, entropy, algorithmic complexity or algorithmic information
content, minimum description length, Fisher information, code length
(prefix-free, Huffman, Shannon-Fano, error-correcting, Hamming), Cher-
noff information, dimension, fractal dimension, Lempel-Ziv complexity.

• How hard is it to create?9

Computational complexity, time computational complexity, space compu-
tational complexity, information-based complexity, logical depth, thermo-
dynamic depth, cost, cripticity.

• What is its degree of organization? This may be divided up into two
quantities: difficulty of describing organizational structure and amount
of information shared between the parts of a system as a result of this
organizational structure.

– Effective complexity

Metric entropy, fractal dimension, excess entropy, stochastic com-
plexity, sophistication, effective measure complexity, true measure
complexity, topological epsilon-machine size, conditional informa-
tion, conditional algorithmic information content, schema length,
ideal complexity, hierarchical complexity, tree subgraph diversity, ho-
mogeneous complexity, grammatical complexity.

– Mutual information

Algorithmic mutual information, channel capacity, correlation, stored
information, organization.

8Typically measured in bits
9Typically measured in time, energy, etc.
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Subtle differences distinguish measures in the same group because they are
closely related.

In the first group, entropy and algorithmic complexity are the most represen-
tative. Entropy is widely applicable for indicating randomness. It also measures
uncertainty, ignorance, surprise, information, etc. Entropy is strongly related to
statistical entropy (Boltzmann, Gibbs) and also to algorithmic complexity (also
called algorithmic randomness and Kolmogorov-Chaitin complexity) which can
be used to measure disorder or randomness without any recourse to probabili-
ties [46, 96]. The algorithmic complexity of an object is defined as the length
of the minimal universal Turing machine program needed to reproduce it. A
basic theorem states that the entropy of a random variable X taking values in
S is equal, except for an additive constant, to the expected value of algorithmic
complexity of elements in S.

In the second group, computational complexity is the amount of computa-
tional resources (usually time or space) needed to solve a problem [42]. Logical
depth, introduced by Bennett [7], measures the computational resources taken
to calculate the results of a program of minimal length. And thermodynamic
depth, introduced by Pagels and Lloyd [51], is a measure of how hard it is to
put something together.

Finally, the third group expresses the concept of complexity that we have
adopted in this thesis. A short review of this concept now follows.

2.3.3 Statistical Complexity

In the two last decades, diverse complexity measures, such as, for instance, ex-
cess entropy or effective measure complexity and mutual information, have been
proposed from different fields to quantify the degree of structure or correlation
of a system [36, 48, 29, 28]. To avoid confusion, Feldman and Crutchfield [29]
proposed calling them “measures of statistical complexity”.

James Crutchfield, David Feldman, and Murray Gell-Mann present a good
introduction about their complexity concept in [29, 31] 10 . We summarize the
most basic ideas below:

• Information is important in the study of complex structures.

• Randomness and unpredictability of a system (entropy) does not com-
pletely capture the correlational structure 11 in its behaviour.

• The larger and more intricate the correlations between the system’s con-
stituents, the more structured is the underlying distribution.

• Structure and correlation, however, are not completely independent of
randomness.

• Both maximally random and perfectly ordered systems possess no struc-
ture.

• Statistical complexity measures provide a measure of the regularities pre-
sent in an object above and beyond pure randomness.

10This point of view provided us with the basis of our concept of scene complexity.
11Structure is referred to as the relationship between the components of a system.
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Diverse approaches to measuring statistical complexity have been taken. One
line is based on information theory and the quantities used are related to various
forms of mutual information. Another line appeals to computation theory’s
classification of devices that recognize different classes of formal languages. On
the other hand, other researchers of the Santa Fe Institute define the statistical
complexity of a system “so as to capture the degree to which the system consists
of regularities versus randomness”[31].

Our complexity approach will be based on information theory and the com-
plexity (correlation-structure-dependence) of a scene will be quantified by the
mutual information.

2.4 Summary

In this chapter, we have reviewed the most basic concepts of the radiosity
method, information theory, and complexity needed in this dissertation.

First, we focused attention on the radiosity equation, the properties of the
form factors and their computation using local and global lines, random walks
in a scene, and refinement criteria for hierarchical radiosity. Second, entropy
and mutual information were reviewed for discrete and continuous channels, and
the most basic inequalities were introduced. Finally, the notion of complexity
and some possible ways of quantifying it were presented.



Chapter 3

Scene Visibility Entropy

In this chapter, a discretised scene is interpreted as a discrete information chan-
nel. This fact enables us to introduce the notions of entropy and mutual in-
formation applied to the visibility of a scene, where only the geometry is taken
into account. We also discuss the concept of scene randomness, associated with
entropy, and we study its relationship with Monte Carlo error in the form fac-
tor computation. Most of the contents of this chapter have been presented in
[17, 23, 25].

3.1 The Scene as a Discrete Channel

In order to apply information theory tools to a scene, we model the scene in two
equivalent ways:

• A random walk

A discrete random walk (section 2.1.8 ) in a discretised scene is a discrete
Markov chain where the transition probabilities are the form factors and
the stationary distribution is given by the relative area of patches (Figure
3.1).

• An information channel

A scene can be interpreted as a discrete information channel where the
input and output variables take values over the set of patches (the relative
area of patches is the probability distribution of these variables) and the
channel transition matrix is the form factor matrix.

In the previous chapter (sections 2.1.8 and 2.2), we reviewed the most basic
concepts about a Markov chain and an information channel. Now, to work with
a scene, the following mapping or transformation is done from those general
definitions:

• For a discrete Markov chain:

– number of states: n =⇒ number of patches: np

– transition probability: Pij =⇒ form factor: Fij

44
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Figure 3.1: Discrete random walk in a scene.

– stationary probability of state i: wi =⇒ relative area of patch i:
ai = Ai

AT

• For a discrete information channel with random variables X and Y :

– probability distributions of X and Y : p and q =⇒ relative area of
patches: a = {ai} = { Ai

AT
}

– conditional probability: pj|i =⇒ form factor: Fij

3.1.1 Discrete Scene Visibility Entropy

From the above assumptions, we define the discrete scene visibility entropy rate,
or simply scene visibility entropy, as

HS = H(Y |X) = −

np∑

i=1

ai

np∑

j=1

Fij log Fij (3.1)

The scene entropy can be interpreted as the average uncertainty that remains
about the destination patch of a random walk (or ray) when the source patch
is known. It also expresses the average information content of a random walk
in a scene. Moreover, HS can also be seen as the average of the entropies of all
patches, where the entropy of a patch i is defined by

Hi = H(Y |X = i) = −

np∑

j=1

Fij log Fij (3.2)

and thus (3.1) can be written as

HS =

np∑

i=1

aiHi (3.3)

The entropy of patch i expresses the uncertainty (or ignorance) of a ray exiting
from i about the destination patch. In fact, it is the Shannon entropy of the
form factors of patch i.

The Bayes theorem (2.56) can be now expressed by the reciprocity property
of the form factors (2.8)

pij = aiFij = ajFji ∀i, j (3.4)
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Also, we define the scene visibility positional entropy as

HP = H(X) = H(Y ) = −

np∑

i=1

ai log ai (3.5)

which may be interpreted as the uncertainty on the position (patch) of a ray
traveling an infinite random walk. It is the Shannon entropy of the stationary
distribution.

The joint entropy of a scene is given by

HJ = H(X, Y ) = −

np∑

i=1

np∑

j=1

aiFij log aiFij (3.6)

This entropy can be interpreted as the uncertainty about the pair position-target
of a ray in an infinite random walk. It is the Shannon entropy of a random
variable with probability distribution {aiFij}.

3.1.2 Discrete Scene Visibility Mutual Information

The discrete scene visibility mutual information is defined as

IS = I(X, Y ) = H(Y )−H(Y |X)

= −

np∑

i=1

ai log ai +

np∑

i=1

ai

np∑

j=1

Fij log Fij (3.7)

and can be interpreted as the amount of information that the destination patch
conveys about the source patch, and vice versa. IS is a measure of the average
information transfer in a scene.

Let us remember that mutual information can be defined as a Kullback-
Leibler distance (section 2.2.2): I(X, Y ) = DKL({pij}‖{piqj}). Thus, scene
mutual information is the distance or discrimination between the scene proba-
bility distribution {pij} = { Ai

AT
Fij} and the independence distribution of a scene

{piqj} = {aiaj}. It can also be expressed as

IS =

np∑

i=1

np∑

j=1

aiFij log
aiFij

aiaj

=

np∑

i=1

np∑

j=1

aiFij log
Fij

aj

(3.8)

3.1.3 Properties

In a discretised scene the following properties are met:

• From the reciprocity property of the form factors (2.8), the reversibility
of the channel (and also of the Markov chain) can be obtained: HS =
H(Y |X) = H(X |Y ).

• HJ = HP + HS = 2HP − IS = 2HS + IS (Figure 3.2)
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Figure 3.2: Venn diagram of a scene.

• If all the patches have the same area, then ai = 1
np

and Fij = Fji, for all

i and j, and therefore

HS = −
1

np

np∑

i=1

np∑

j=1

Fij log Fij =
1

np

np∑

i=1

Hi (3.9)

and

HP = log np (3.10)

If all the Fij are also equal, then HS reaches its maximum value: HS =
HP = log np. The minimum value for HS will be reached when all the
form factors from any patch are near zero except one with value near 1:
HS ≈ 0.

3.2 Randomness versus Correlation

As we have seen in the previous section, scene visibility entropy HS is a general
measure of the uncertainty or information content associated with a scene: “The
entropy density provides an answer to the question: in a Markov chain, given
the knowledge of the previous symbol, how uncertain are you, on average, about
the next symbol?” [27]. Thus, HS can be seen as the intrinsic unpredictability or
the irreducible randomness associated with the chain. HS is also the expected
minimum number of bits per symbol required to code a random walk in a scene.

On the other hand, scene mutual information IS , which expresses the average
information transfer, is a measure of the dependence or correlation between the
different parts of a scene. According to W.Li [47], “it is now well understood
that mutual information measures the general dependence, while the correlation
function measures the linear dependence, and mutual information is a better
quantity than the correlation function to measure dependence”.

3.2.1 Maximum and Minimum Scene Entropy

It is especially interesting to ask about the extremal cases of maximum and
minimum visibility entropy, which correspond to the maximum disorder (un-
predictability or randomness in the ray path) and the maximum order (pre-
dictability), respectively. We must remark here that the concepts of order and
disorder are not directly referred to the collocation of objects in space, but to
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visibility criteria. Maximum unpredictability can be obtained in scenes with no
privileged visibility directions, and maximum predictability in the contrary case
1 .

Both cases can be illustrated with the following two examples:

• The maximum entropy is exemplified by the interior of an empty sphere
divided into equal area patches. Here all the form factors are equal and
the uncertainty of the destination patch is maximum:

HS = HP = log np (3.11)

This means that no visibility direction is privileged and the information
transfer is zero: IS = 0.

The sphere represents independence, equilibrium, homogeneity. It is mod-
eled by a channel where the variables X and Y are independent, because
in a sphere Fij = aj and, thus, pij = aiFij = aiaj . This is the expression
of independence in a scene. Thus, if the independence is represented by a
sphere, the discrete scene mutual information expresses the distance be-
tween a given scene and a sphere discretised with the same number and
area distribution of the patches.

Note that if the number of patches is doubled, the information content
(entropy) of an empty sphere with equal area patches increases by one
bit.

• The minimum entropy can be represented by a scene with almost touching
objects, as for instance two near concentric spheres with a suitable dis-
cretisation. In this case there are strongly privileged visibility directions.
This system is highly correlated and the information transfer is large.

3.2.2 Empirical Results

In this section we show the behaviour of the entropy and mutual information in
simple scenes. In the following experiments, form factors have been computed
using global lines (see section 2.1.6).

Different scenes but the same discretisation of the environment

In scenes with the same discretisation (as in Figure 3.3/Table 3.1, where we have
a cubical enclosure with 512 interior cubes), and consequently with the same
HP , where the interior objects have simply been displaced, we can observe
that the increase of entropy remains compensated by a mutual information
decrease, and vice versa: more randomness means less correlation (Figure 3.3a),
less randomness means more correlation (Figure 3.3c). The Venn diagrams in
Figure 3.4 illustrate this behaviour.

1We have to be careful with the concept of maximum and minimum scene entropy, because
this is strongly dependent on the scene discretisation, and particularly on the number of
patches. For instance, it is very difficult to obtain a low value of the entropy if the number of
patches is large.
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(a) (b) (c)

Figure 3.3: A random configuration and two clustered configurations with 512
cubes.

Scene HS IS

Fig.3.3a 6.761 4.779

Fig.3.3b 5.271 6.270

Fig.3.3c 4.849 6.692

Table 3.1: Entropy and mutual information for Figures 3.3a, 3.3b and 3.3c. For
each scene, HP = 11.541 and 107 global lines have been used to compute the
form factors.

The same scene but different discretisations of the environment

How does scene entropy behave with an increase in the number of patches?
According to information theory, when the number of patches goes to infinity,
the scene entropy also goes to infinity, but scene mutual information tends to
a finite value (see the next chapter, section 4.4). So, in general, the increase in
HS has to be greater than the increase in IS . This fact is partially illustrated
in Table 3.2, corresponding to Figure 3.5, where we have a cubical enclosure
with three different regular discretisations of its surfaces (600, 2400, and 5400
patches, respectively). We can see that, for each scene, HP = log np, as all the
patches have the same area. The Venn diagrams in Figure 3.6 illustrate the
behaviour of the entropy and mutual information of these scenes.

Normalized measures

In order to account for changes in the proportion of randomness (HS) and
correlation (IS) in a scene, these can be normalized by dividing them by the

IS SHSH IS SHSH SHSIHS

(a) (b) (c)

Figure 3.4: Venn diagrams corresponding to different scenes with the same
discretisation. The size of the circles (HP ) remains the same in all the diagrams.
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(a) (b) (c)

Figure 3.5: Three empty cubical enclosures with their surfaces regularly discre-
tised into (a) 10 × 10, (b) 20 × 20, and (c) 30× 30 patches, respectively. The
total number of patches is, respectively, 600, 2400, and 5400.

Scene HS IS HP

Fig.3.5a 7.838 1.391 9.229

Fig.3.5b 9.731 1.498 11.229

Fig.3.5c 10.852 1.547 12.399

Table 3.2: Results for a cubical enclosure with different discretisations of its
surfaces (Figure 3.5). 109 global lines have been used to compute the form
factors.

positional entropy HP . So, they range from 0 to 1.
Normalized scene entropy can be defined as

HS =
HS

HP

(3.12)

and normalized scene mutual information as

IS =
IS

HP

= 1−
HS

HP

(3.13)

In the literature, normalized mutual information is considered as a measure of
correlation [15]. Also, it can be useful to normalize HS and IS with respect to

the joint entropy HJ : ĤS = HS

HJ
and ÎS = IS

HJ
. Obviously, they also range from

IS SHSH IS SHSH IS SHSH

(a) (b) (c)

Figure 3.6: Venn diagrams corresponding to the scenes of Figure 3.5 where we
have a cubical enclosure with successive refinements. The size of the circles
(HP ) increases with the number of patches.
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0 to 1. A similar approach has been used as a measure of 3D medical image
alignment [85].

In the sequence of results of Table 3.3, where we start with an empty cubical
enclosure (Figure 3.5a) and then we add small interior cubes (Figures 3.7, 3.8,
3.3a, and 3.3c), we can observe how the normalized entropy decreases when we
introduce progressively more cubes. This fact increases the correlation in the
scene, to the detriment of its randomness, in spite of the fact that HP also
increases.

(a) (b)

Figure 3.7: (a) Random and (b) clustered configurations with 27 cubes.

(a) (b)

Figure 3.8: (a) Random and (b) clustered configurations with 64 cubes.

From the previous results, we see that scene entropy (randomness) tends to
increase with the number of patches and scene mutual information (correlation)
tends to increase with the number of objects within a enclosure. So, the increase
in the number of patches and the increase in the number of objects work in
different (but complementary) directions.

3.3 Entropy and Mutual Information of a Scene

in Flatland

In this section, discrete entropy and discrete mutual information are adapted to
flatland by simply substituting the area of each patch with the length of each
segment or “patch” 2.

Similarly to section 3.1, a random walk in a discretised 2D scene can be
considered as a Markov chain where Pij = Fij , n = np, and {wi} = { Li

LT
} = {li}

2The exploration of flatland has facilitated our understanding of the information theory
measures applied to a scene and has opened new lines of research. 2D studies have applications
in areas such as robot motion and architectural design.
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Scene HS IS HS

Fig.3.5a 7.821 1.408 0.847

Fig.3.7a 7.780 1.669 0.823

Fig.3.7b 7.589 1.861 0.803

Fig.3.8a 7.709 2.009 0.793

Fig.3.8b 7.606 2.112 0.783

Fig.3.3a 6.761 4.779 0.586

Fig.3.3c 4.849 6.692 0.420

Table 3.3: Results for the empty scene of Figure 3.5a and the scenes with 27,
64 and 512 small cubes of Figures 3.5a, 3.7, 3.8, 3.3a, and 3.3c. For each scene,
107 global lines have been cast.

(li is the relative length of patch i). In a 2D scene, the Bayes theorem can be
expressed by the following property of the form factors

pij = liFij = ljFji ∀i, j (3.14)

3.3.1 Definitions

From the above assumptions, we obtain the following definitions:

• Discrete scene visibility entropy rate or simply scene visibility entropy

HS = −

np∑

i=1

li

np∑

j=1

Fij log Fij (3.15)

• Scene visibility positional entropy

HP = −

np∑

i=1

li log li (3.16)

• Scene visibility joint entropy

HJ = −

np∑

i=1

np∑

j=1

liFij log(liFij) (3.17)

• Discrete scene visibility mutual information

IS = HP −HS =

np∑

i=1

np∑

j=1

liFij log
Fij

lj
(3.18)
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Figure 3.9: HS values (in vertical axis) for regular polygons of 3, 5, 7, 9, and
11 sides with different regular discretisations for each side. The horizontal axis
is labeled with the number of patches for each side.

3.3.2 Empirical Results

In order to illustrate the above definitions, we study two sets of scenes: the
regular polygons and three scenes with 64 squares in each (Figure 3.12). In the
first case, the form factors have been computed exactly by the string rule [57]
and, in the second, 105 global lines have been cast to obtain a Monte Carlo
solution for the form factors (see section 2.1.6).

For regular polygons, Figure 3.9 shows that the minimum scene visibility
entropy corresponds to an equilateral triangle and the maximum to an 11-sided
polygon. This fact can also be tested in Table 3.4. For instance, the entropy
HS of an equilateral triangle with 150 patches (HS ≈ 5.969) is less than the
entropy HS of a pentagon with the same number of patches (HS ≈ 6.657).
In fact, continuing the sequence of regular polygons, maximum entropy should
correspond to a circle.

number HS

of sides 10 30 50

3 3.739 5.248 5.969
4 4.590 6.138 6.867
5 5.094 6.657 7.389
6 5.455 7.025 7.758
7 5.737 7.311 8.045
8 5.969 7.545 8.281
9 6.166 7.745 8.480
10 6.338 7.918 8.654
11 6.491 8.072 8.808
12 6.628 8.210 8.946

Table 3.4: HS for regular polygons from 3 to 12 sides with different regular
discretisations (10, 30, and 50 patches for each side).

In Figure 3.10/Table 3.5 we observe that maximum mutual information cor-
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Figure 3.10: IS values (in vertical axis) for regular polygons of 3, 5, 7, 9, and
11 sides with different regular discretisations for each side. The horizontal axis
is labeled with the number of patches for each side.

responds to an equilateral triangle (IS ≈ 1.260) and minimum to a polygon
of 11 sides (IS ≈ 0.296): there is a higher correlation between the sides of a
triangle than between the sides of an 11-sided polygon. Thus, continuing this
sequence of regular polygons, minimum mutual information has to correspond
to a circle.

number IS

of sides 10 30 50

3 1.168 1.244 1.260
4 0.732 0.769 0.777
5 0.550 0.572 0.577
6 0.452 0.467 0.470
7 0.393 0.404 0.406
8 0.353 0.362 0.363
9 0.326 0.332 0.333
10 0.306 0.311 0.312
11 0.290 0.295 0.296
12 0.279 0.282 0.283

Table 3.5: IS for regular polygons from 3 to 12 sides with different regular
discretisations (10, 30, and 50 patches for each side).

Figure 3.11 shows the behaviour of the entropy and mutual information of
an equilateral triangle when the number of patches grows. In accordance with
the theory, while entropy increases clearly with the number of patches, mutual
information appears to converge to a determined value (see the next chapter,
section 4.4).

For the scenes with 64 squares (Figure 3.12/Table 3.6) we observe that max-
imum mutual information, or correlation, is obtained in Figure 3.12a, and max-
imum entropy in Figure 3.12c. The mutual information of an empty square
scene (IS ≈ 0.760 for 20 patches on each side) increases outstandingly when
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Figure 3.11: HP , HS and IS values (in vertical axis) for an equilateral triangle
with different regular discretisations for each side. The horizontal axis is labeled
with the number of patches for each side.

(a) (b) (c)

Figure 3.12: Three scenes with 64 squares in each. The enclosure is regularly
discretised into 80 patches.

we add 64 little squares in its interior (from IS ≈ 4.990 to IS ≈ 6.148). In
Table 3.6, HP should be equal in the three cases, but the difference is due to
the computational error.

3.4 Scene Entropy and Monte Carlo Error in

Form Factor Computation

We now explore the relationship between the scene entropy and the Monte Carlo
error in form factor computation. We give some evidence that entropy is deeply
related to the computational error.

3.4.1 Local and Global Lines from an Information-Theory

Point of View

As we have seen in section 3.1, a scene can be modeled by a random walk or
an information channel. A random walk in a scene can also be thought of as
a sequence of local lines: starting in a given patch, a local line is sampled to
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Scene HS IS HP

Fig.3.12a 2.244 6.148 8.392
Fig.3.12b 3.001 5.391 8.392
Fig.3.12c 3.443 4.990 8.433

Table 3.6: HP , HS , and IS values for the scenes in Figure 3.12. 106 global lines
have been cast for each scene.

obtain a destination patch which turns into the origin of a new local line, and
so, recursively, we get a random walk.

Now, uniformly distributed local and global lines are interpreted from an
information-theory point of view:

• The entropy Hi of patch i can be interpreted as the uncertainty about the
destination patch of a local line cast from this patch.

• The scene entropy rate HS represents the average uncertainty of a local
line, cast from any patch, about the destination patch.

• The joint entropy HJ expresses the average uncertainty of a segment of a
global line traversing a scene about the two patches connected.

Observe that the average uncertainty or unpredictability of a segment of a global
line is higher than the uncertainty of a local line because HJ = 2HS +IS (Figure
3.2). Thus, at least HJ is twice HS . HS ranges from 0 to HP and HJ from HP

to 2HP . Let us also remember that, for a given discretisation, the higher the
correlation, the smaller the uncertainty.

It is of interest to examine two extremal cases:

• A highly correlated scene (Figure 3.13a)

In this case, the uncertainty of a local line can be very low and it is much
smaller than the uncertainty of a global line segment. But in general,
both uncertainties are relatively small compared with those of a spherical
scene.

• A spherical scene (Figure 3.13b)

The uncertainty of a segment of a global line is twice the uncertainty of a
local line:

HJ = 2HS = 2 log np (3.19)

3.4.2 Scene Entropy and Variance of the Form Factor Es-

timators

In this section, we study the relationship between the entropy and the mean
square error of all form factors.

Using local or global lines, the variance for the form factor estimator (section
2.1.6) is given by (2.38)

V [Fij ] =
Fij(1− Fij)

Ni
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(a) (b)

Figure 3.13: (a) A highly correlated scene. (b) A spherical scene.

where Ni is the number of local lines cast from patch i or the number of global
lines which cross i.

Let us consider now an importance vector αi, which gives us the importance
we assign to each patch. For each patch i, we cast a number of lines, Ni,
proportional to this importance, that is Ni = αiN , where N is the total number
of lines cast. For instance, αi could be ai = Ai

AT
.

Now we consider the expected value of the mean square error for all patches
(weighted with the importance αi). Since for each patch the expected value of
the square error is equal to the variance, we obtain:

E(MSE) =
∑

i

αi

∑

j

V [Fij ]

=
∑

i

αi

∑

j

Fij(1− Fij)

Ni

=
∑

i

αi

∑

j

Fij(1− Fij)

αiN

=
1

N
(
∑

i

∑

j

Fij −
∑

i

∑

j

F 2
ij)

=
1

N
(np −

∑

i

∑

j

F 2
ij) (3.20)

This expression has a minimum value when for all i in the sum there exists a
j such that Fij ≈ 1 and ≈ 0 otherwise. This ideal situation gives us a null
error, and obviously corresponds to the minimum scene entropy and maximum
mutual information. On the other hand, the maximum is obtained when all
the form factors are equal (with value 1

np
), which corresponds to the maximum

scene entropy.
The sets of scenes analyzed in this chapter can be used to study the rela-

tionship between scene entropy and the expected value of the mean square error
for all form factors.

Tables 3.7, 3.8 and 3.9 show that the greater the entropy the greater the
error in form factor computation. This means that, for a given error, we need to
cast more lines for a scene with more entropy. Also, by increasing the number
of lines, we can see how the error in entropy estimation increases with the
scene entropy. Tables 3.7 and 3.8 also show how the increase in the number of
lines increases the estimated value of the entropy and, logically, decreases the
estimated value of the mutual information. The reason for this entropy increase
is that, in the algorithm used, the form factors have an initial value of zero
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and thus, with few lines, many form factors retain this value. This leads to an
apparently larger correlation in a scene, i.e., a lower value in entropy estimation
and a higher value in mutual information estimation.

Scene Lines (106) HS IS E(MSE)

Fig.3.3a 1 6.370 5.171 1284.6

Fig.3.3a 10 6.761 4.779 1286.7

Fig.3.3b 1 5.072 6.469 949.3

Fig.3.3b 10 5.271 6.270 950.1

Fig.3.3c 1 4.674 6.867 898.8

Fig.3.3c 10 4.849 6.692 900.9

Table 3.7: Results for three cubical enclosures with 512 small cubes (Figures
3.3a, 3.3b and 3.3c). The E(MSE) is normalized to a single line. For each
scene, HP = 11.541 and 106 and 107 lines have been cast.

By increasing the number of patches, how does the error behave? Table 3.8
shows how the error increases with the number of patches, in the same way as
scene entropy increases.

Scene Lines (106) HS IS E(MSE)

Fig.3.5a 10 7.821 1.408 497.7

Fig.3.5a 100 7.837 1.392 497.7

Fig.3.5a 1000 7.838 1.391 497.7

Fig.3.5b 10 9.420 1.809 2012.7

Fig.3.5b 100 9.705 1.524 2013.0

Fig.3.5b 1000 9.731 1.498 2013.0

Fig.3.5c 10 9.684 2.715 4543.9

Fig.3.5c 100 10.708 1.691 4545.8

Fig.3.5c 1000 10.852 1.547 4546.1

Table 3.8: Results for the cubical enclosure with different discretisations of its
surfaces (Figure 3.5a: 600 patches, Figure 3.5b: 2400 patches and Figure 3.5c:
5400 patches). The E(MSE) is normalized to a single line. For each scene, 107,
108 and 109 lines have been cast.

The relationship between scene entropy and computational error is reinforced
by the following observations 3 :

• HS expresses uncertainty or equivocation [78].

3A theoretical relationship between scene entropy and the variance of the form factor
estimates remains to be investigated.
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Scene HS IS HP E(MSE)

Fig.3.12a 2.244 6.148 8.392 23.315
Fig.3.12b 3.001 5.391 8.392 31.274
Fig.3.12c 3.443 4.990 8.433 37.121

Table 3.9: HP , HS , IS and E(MSE) values for the scenes of Figure 3.12.
E(MSE) is normalized to a single line segment. 106 global lines have been cast
for each scene.

• HS , like variance, increases with refinement and is zero when there is no
choice.

• HS represents the average difficulty in hitting a patch.

• “Although both entropy and variance are measures of dispersion and un-
certainty, the lack of a simple relationship between orderings of a distribu-
tion by the two measures emanates from quite substancial and subtle dif-
ferences. Both measures reflect concentration but their respective metrics
for concentration are different. Unlike variance which measures concen-
tration only around the mean, entropy measures diffuseness of the density
irrespective of the location(s) of concentration” [18].

• Suppose we wish to measure the probability of error Pe in guessing the
origin patch (X) of a global line segment from the knowledge of the patch
hit (Y ). From Fano’s inequality (2.71) we obtain a tight lower bound on
this error probability in terms of the scene entropy HS :

Pe ≥
HS − 1

log np

(3.21)

As HS is zero if and only if X is a function of Y , we can estimate X from
Y with zero probability of error if and only if HS = 0. Intuitively, we
expect to be able to estimate X with a low probability of error if and only
if HS is small.

3.5 Summary

In this chapter, we have presented a scene as a discrete information channel
where the input and output variables take values over a set of patches and the
channel transition matrix as the form factor matrix. This gives us a new way
of looking at the visibility of a scene.

We applied the most basic information-theory measures (Shannon entropy,
conditional entropy, joint entropy, and mutual information) to scene visibility
and we interpreted entropy and mutual information of a scene, respectively, in
the following way:

• Scene visibility entropy provides the average uncertainty that remains
about the source patch when the destination patch is known, and vice
versa. It also expresses the randomness or unpredictability in a scene.
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• Discrete scene visibility mutual information expresses the average infor-
mation transfer in a scene. It can also be interpreted as the correlation or
dependence in a scene.

We described different experiments with 3D and 2D scenes to show the comple-
mentarity of these measures.

We developed a new interpretation of the entropy from local and global lines.
We have shown that the uncertainty of a global line segment is at least twice
the uncertainty of a local line.

Finally, we demonstrated that there is a close relationship between the scene
entropy and the Monte Carlo error in form factor computation. We have seen
that the bigger the entropy, the bigger the error in form factor computation.
This means that, for a given error, we need to cast more lines for a scene with
more entropy.



Chapter 4

Scene Visibility Complexity

This chapter is dedicated to scene visibility complexity, which will be interpreted
as the difficulty in achieving a precise discretisation. We begin by proposing the
continuous scene mutual information, independent of any discretisation, as a
measure for the scene complexity. Continuous scene visibility mutual informa-
tion is computed using both global or local lines. The relationship between the
discrete and continuous mutual information is analysed and the difference be-
tween them is defined as the discretisation error. Finally, we describe a possible
scene classification in flatland. Most of the content of this chapter has been
discussed in [21, 25].

4.1 Complexity of a Scene

Scene complexity has often been expressed as the number of patches into which
a scene is subdivided. But, what do we really expect scene complexity to mea-
sure? In our context, scene complexity has to answer the question of how
difficult it is to compute the visibility and radiosity of a scene with sufficient
accuracy. Studying scene complexity will help to improve our knowledge about
the behaviour of the visibility and radiosity of a scene.

To solve the illumination in a diffuse environment, we need to simulate the
interreflection of light between all the surfaces. As we have mentioned in section
1.1, this simulation presents typical characteristics of complex behaviour. The
difficulty in obtaining a precise illumination solution depends on

• the degree of dependence between all the surfaces

• how the interaction between these surfaces changes in dependence when
the system is subdivided

• the degree of unpredictability

The two first considerations can be represented by a statistical complexity mea-
sure, which quantifies correlation, structure, or interdependence between the
parts of a system, and the third one by the entropy, which measures random-
ness or unpredictability. In this thesis, the word complexity will be reserved for a
measure of statistical complexity and entropy will be referred to as randomness.

61
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The most representative measures of statistical complexity are excess en-
tropy and mutual information. For scene visibility, the following proposition is
fulfilled:

Proposition 1 From the point of view of scene visibility, the excess entropy
becomes the mutual information.

Proof. From (2.60–2.63) and the definitions in section 3.1, we have

H(X1, . . . , Xn) = H(X1) + . . . + H(Xn|X1, . . . , Xn−1)

= H(X1) + H(X2|X1) + . . . + H(Xn|Xn−1)

= HP + (n− 1)HS

Thus, from (2.64), E = limn→∞(HP + (n− 1)HS − nHS) = HP −HS = IS . 2

So, we propose taking the mutual information as a measure of scene com-
plexity.

According to Feldman, Rohilla, and Crutchfield:

• “It has become (in our sense) more broadly understood that a system’s
randomness and unpredictability fail to capture its patterns and correla-
tional structure.” [28]

• Entropy and mutual information are orthogonal or complementary: “Com-
plexity and randomness each capture a useful property to describe how a
process manipulates information” [77].

In this thesis, entropy and mutual information express two basic aspects of
scene complexity. But, we are sure that other measures could capture other
perspectives of the scene complexity. Remember that one of the most basic
formulae of information theory (2.57) relates entropy to mutual information:

H(X) = H(X |Y ) + I(X, Y ) (4.1)

Thus, complexity and randomness are combined in the same expression.
A very simple approach would be to consider that the complexity can be

represented by the number of patches. It is true that scene entropy is strongly
dependent on np and increases with it, with a maximum value of log np. How-
ever, as we will see in this chapter, scene mutual information presents a very
different behaviour with respect to np.

4.2 Continuous Scene Visibility Mutual Infor-

mation

A scene is a continuous system. Thus, by discretising a scene into patches,
a distortion or error is introduced. In a way, to discretise means to make it
uniform, and consequently some information is lost. Obviously, the maximum
accuracy of the discretisation is accomplished when the number of patches tends
to infinity. Since the continuous mutual information expresses with maximum
precision the information transfer or correlation in a scene, it will be considered
as the main measure of the scene complexity. On the other hand, discrete mutual
information will represent the complexity of a discretised scene.
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Similarly to the previous chapter, now the scene is modeled by a continu-
ous random walk (Figure 4.1) or by a continuous information channel. As we
have seen in section 2.2.6, the mutual information between two continuous ran-
dom variables X and Y is the limit of the mutual information between their
discretised versions. On the contrary, the entropy of a continuous random vari-
able does not equal the entropy of its discretised version in the limit of a finer
discretisation.

1

0x

x4

1 6xx
x5

x3

x2

2

3
4
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6

Figure 4.1: Continuous random walk in a scene.

Thus, in a scene, discrete mutual information IS converges to continuous
mutual information Ic

S when the number of patches tends to infinity:

Ic
S = lim

np→∞
IS (4.2)

In this chapter we will see that this result is very important for this dissertation
because it will enable us to calculate the distance to the ideal discretisation,
represented by the continuous mutual information.

Scene visibility entropy however tends to infinity when the number of patches
tends to infinity:

lim
np→∞

HS = ∞ (4.3)

As we have seen (section 2.1.8), when the states form an uncountable set, we
deal with a continuous Markov chain. We can obtain the continuous formulae
for the entropy and mutual information of a scene from the respective discrete
definitions using the following substitutions:

• Each state by an infinitesimal area and each summatory by an integral.

• wi = Ai

AT
=⇒ 1

AT
. This means substituting the discrete probability of

taking patch i by the continuous probability of selecting any point.

• Fij =⇒ F (x, y). This means substituting the patch-to-patch form factor
by the point-to-point form factor. Remember that the value of F (x, y) is
cosθxcosθy

πr2
xy

for mutually visible points, or zero otherwise, θx and θy being

the angles which the normals at x and y form with the segment joining x
and y, and rxy the distance between x and y (see section 2.1.3).

In the same way, the continuous formulae for a scene can also be obtained
from the continuous formulae of the entropy and mutual information (section
2.2.6) by applying the following substitutions:
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• dx =⇒ dAx, dy =⇒ dAy

• p(x) =⇒ 1
AT

• p(y|x) =⇒ F (x, y)

• p(x, y) =⇒ 1
AT

F (x, y)

Thus, we obtain

• Continuous positional entropy

Hc
P = −

∫

S

1

AT

log
1

AT

dAx = log AT (4.4)

• Continuous scene visibility entropy

Hc
S = −

∫

S

∫

S

1

AT

F (x, y) log F (x, y)dAxdAy (4.5)

• Continuous scene visibility mutual information

Ic
S = log AT +

∫

S

∫

S

1

AT

F (x, y) log F (x, y)dAxdAy

=

∫

S

∫

S

1

AT

F (x, y) log(AT F (x, y))dAxdAy (4.6)

For example, in the interior of an empty sphere, as any pair (x, y) fulfills
F (x, y) = 1

AT
, the result obtained is, as expected, Ic

S = 0. Remember that, in a
sphere, IS = 0 and thus limnp→∞ IS = Ic

S = 0.
Note that Hc

P and Hc
S are not invariant to a change in the scale of a scene.

For our objectives, we are only interested in their discrete versions, which are
always invariant to a change in the scale. IS and Ic

S also have this desirable
property.

4.3 Monte Carlo Computation of the Scene Vis-

ibility Complexity

Now we will show how the continuous mutual information can be computed
using local or global lines.

4.3.1 Monte Carlo Integration

The continuous mutual information integral can be solved by Monte Carlo in-
tegration. Reparametrizing the integral, we have

Ic
S =

∫

S

∫

S

1

AT

F (x, y) log(AT F (x, y))dAxdAy

=

∫

S

∫

Ωx

1

AT

cos θx

π
log(AT F (x, y(x, ωx)))dAxdωx (4.7)
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where y(x, ωx) is the point visible from x in the ωx direction. Now we can use
cos θx

πAT
as probability density function (

∫
S

∫
Ωx

cos θx

πAT
dAxdωx = 1). Drawing sam-

ples according to this distribution means simply selecting first a random point
in the scene upon the area and a direction upon the form factor distribution.
This can be achieved with local lines or global lines. The result obtained is

Ic
S ≈

1

N

N∑

k=1

log(AT F (xk, yk(xk, ωxk
))

=
1

N

N∑

k=1

log
(AT cos θxk

cos θyk

πr2
xkyk

)
(4.8)

In the global line case, N stands for the total number of segments of the global
lines or the number of pairs of points considered, which is the total number of
intersections divided by two (see Figure 2.8). In the local line case, N represents
the total number of local lines used in a scene and the quantity of lines cast
from each patch, Ni, proportional to its area (Ni = Ai

AT
N). In this chapter, the

scene complexity has been calculated using both global and local lines.

4.3.2 Empirical Results

We begin by computing the complexity of platonic solids and the Cornell box
(Figure 2.1a) 1. In Table 4.1, we can observe that the minimum complexity
corresponds to a sphere and the maximum complexity to a tetrahedron. As we
expected, the polyhedra that are nearer to the sphere are less complex, i.e., they
have less correlation. Thus, complexity appears to be inversely proportional
to the number of faces. The complexity of the Cornell box is clearly greater
than the one for the empty cube, as we have increased the cube complexity by
introducing objects in its interior.

Scene Ic
S

sphere 0

icosahedron 0.543

dodecahedron 0.825

octahedron 1.258

cube 1.609

tetrahedron 2.626

Cornell box 3.274

Table 4.1: Complexity of platonic solids and the Cornell box. For each scene,
106 global lines have been cast.

In addition, in Table 4.2, we show the complexity for the scenes of Figure
4.2. In Figure 4.2a, an object, made up of a table and four chairs, is situated in

1In our version of the Cornell box scene, prism and cube are slightly separated from the
floor. This fact increases the scene visibility complexity, as in the narrow spaces the correlation
is very high.
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the middle of a room. In Figures 4.2b and 4.2c, arrays of 4 or 16 objects have
been situated in the middle of the same room. In Figures 4.2d, 4.2e and 4.2f,
the same 16 objects have been distributed in different ways. We can see that
the introduction of objects increases the complexity and that the scenes with
the same objects (4.2c, 4.2d, 4.2e and 4.2f) show similar complexities. In this
case, the increase in complexity is produced when there are objects near the
walls because this fact increases the correlation in the scene.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) An object, composed of a table and four chairs, and (b) an array
of 4 objects with the same composition, have been situated in the middle of a
room. (c, d, e, f) The same 16 objects have been distributed in four different
ways.

Scenes Fig.4.2a Fig.4.2b Fig.4.2c Fig.4.2d Fig.4.2e Fig.4.2f

Ic
S 3.837 4.102 5.023 5.043 5.044 5.089

Table 4.2: Complexity of the scenes of Figure 4.2. For each scene, 106 global
lines have been cast.

4.4 Complexity and Discretisation

Now, we will try to show that the scene complexity Ic
S is closely related to

the difficulty in obtaining an accurate discretisation. In a way, to discretise a
scene is to model it. “A system is not complex by some abstract criterion but
because it is intrinsically hard to model” [3]. This point of view is compatible
with W.Li’s comment that: “An intuitively satisfactory definition of complexity
should measure the amount of effort put in that generates correlations in a
sequence. Of course, one cannot be sure that all the effort is spent on generating
correlations. As a result, a measure of correlation typically provides a lower
bound of a measure of complexity, and might be a reasonable estimate of the
complexity” [48].
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4.4.1 Continuous versus Discrete Mutual Information

From section 2.2.6, we know that

• The mutual information between two continuous random variables is the
limit of the mutual information between their discretised versions.

• Refinement can never decrease the discrete mutual information.

• The continuous mutual information is the least upper bound for the dis-
crete mutual information.

Now, if we apply these results to scene visibility, we find that:

• If any patch is divided into two or more patches, the discrete mutual
information IS of the new scene increases or remains the same.

• The continuous scene visibility mutual information is the least upper
bound to the discrete scene visibility mutual information.

Thus, a scene fulfils:

Ic
S − IS ≥ 0 (4.9)

Initially, these results were proved in [26, 21]. In the next chapter, we give a
general proposition proving these properties for visibility, radiosity and impor-
tance. In chapter 6, we will study in more detail the relationship between I c

S

and IS .

Scene Lines (106) HS IS Ic
S

Fig.3.5a 0.1 6.482 2.747 1.610

Fig.3.5a 10 7.821 1.408 1.612

Fig.3.5a 1000 7.838 1.391 1.610

Fig.3.5b 0.1 5.342 5.887 1.608

Fig.3.5b 10 9.420 1.809 1.611

Fig.3.5b 1000 9.731 1.498 1.610

Fig.3.5c 0.1 4.313 8.086 1.610

Fig.3.5c 10 9.684 2.715 1.611

Fig.3.5c 1000 10.852 1.547 1.610

Table 4.3: Results for the cubical enclosure of Figure 3.5 with different discreti-
sations of its surfaces. For each scene, 105, 107, and 109 global lines have been
cast.

As we can see in Tables 4.3 and 4.4, corresponding to Figures 3.5 and 3.3(a),
respectively, the computational cost of Ic

S is much lower than the cost of IS : with
few lines Ic

S can be computed with enough precision, unlike IS which needs a
lot of lines to get a precise measurement. Observe that IS increases with the
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Lines (106) 0.01 0.1 1 10

IS 8.773 6.398 5.171 4.779

Ic
S 5.650 5.636 5.631 5.632

Table 4.4: Discrete and continuous mutual information for a scene with 512
cubes (Figure 3.3a).

number of patches but is always less than Ic
S . We can also see that, due to the

Monte Carlo error, the value of the discrete mutual information decreases (until
convergence is achieved) with the increase in the number of lines cast. With
few lines per patch, the values of the form factors give us an erroneous high
correlation.

In Tables 4.5 and 4.6, corresponding to Figures 4.3 and 4.4, we also show
how discrete mutual information IS increases with the mesh refinement.

(a) (b) (c)

Figure 4.3: Three different discretisations for a tetrahedron. The total number
of patches is, respectively, 4, 151, and 793.

Scene Patches IS Ic
S

Fig.4.3a 4 0.415 2.626

Fig.4.3b 151 1.217 2.626

Fig.4.3c 793 1.445 2.626

Table 4.5: Ic
S and IS for the scenes in Figure 4.3. For each scene, 107 local lines

have been cast.

4.4.2 Discretisation Accuracy

We know that the difference Ic
S − IS (4.9), always positive, expresses the loss

of information transfer due to the discretisation 2. From this assumption, we
can now take a leap forward with two fundamental proposals. The first appears

2This idea will be discussed further in chapter 6, where we will propose a refinement
criterion based on this difference.
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(a) (b) (c) (d)

Figure 4.4: Four different discretisations for the Cornell box. The total number
of patches is, respectively, 19, 196, 826, and 1924.

Scene Patches Lines (106) IS Ic
S

Fig.4.4a 19 10 0.690 3.273

Fig.4.4b 196 10 2.199 3.273

Fig.4.4c 826 10 2.558 3.273

Fig.4.4d 1924 100 2.752 3.273

Table 4.6: Ic
S and IS for the scenes in Figure 4.4.

naturally in an information-theory context and the second will be experimentally
checked:

1. From an information-theory point of view, the ideal discretisation is the
one that captures all the information transfer in a scene. Thus, between
different discretisations of the same scene, the most precise will be the one
that has a higher discrete mutual information IS , i.e., the one that best
captures the information transfer. With this in mind, we can express the
discretisation error as the difference

δv = Ic
S − IS (4.10)

and the relative discretisation error as the quotient

δ
v

=
Ic
S − IS

Ic
S

(4.11)

The relative discretisation accuracy is given by IS

Ic
S

.

2. Continuous mutual information Ic
S expresses the difficulty in obtaining an

accurate discretisation. The higher the Ic
S (i.e., when there is more infor-

mation transfer in a scene), the more difficult it is to obtain an accurate
discretisation, and probably more refinements will be necessary to achieve
a given precision. From this point of view, the difficulty in discretising the
interior of an empty sphere is null (the discretisation error is always equal
to zero). The polyhedra that are “nearer” to the sphere are less complex
than the others, and so easier to discretise.

In the following experiments we find that, for a regular discretisation, the
relative discretisation error is greater in the most complex scenes, i.e., a regular
discretisation obtains better results in less complex scenes.
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These proposals can be analysed from the results shown in Tables 4.7 and
4.8 and on the graphics of Figures 4.7 and 4.8, which have been obtained from
Figures 4.5 and 4.6. Initially, 64 cubes are grouped very closely together in the
center of the cubical enclosure. Little by little they are separated and moved
outwards until they almost touch the walls. Complexity has been calculated
for this sequence of scenes. Figure 4.7, showing continuous versus discrete mu-
tual information, indicates that, according to our definitions, the more complex
scenes are those that have surfaces closer to each another (Figures a,f and b).

(a) (b) (c)

(d) (e) (f)

Figure 4.5: 64 cubes are grouped very closely together in the center of the
cubical enclosure and then are separated and moved outwards until they almost
touch the walls. The discretisation of the cubes (1536 patches) is finer than the
discretisation of the walls (384 patches).

Scene Fig.4.5a Fig.4.5b Fig.4.5c Fig.4.5d Fig.4.5e Fig.4.5f

IS 5.492 5.054 4.672 4.395 4.356 4.775

Ic
S 6.430 5.678 5.177 4.867 5.015 6.055

IS

Ic
S

0.854 0.890 0.902 0.903 0.869 0.789

Table 4.7: Results for the scenes of Figure 4.5. For each scene, 108 global lines
have been cast.

This sequence of scenes has been discretised in two different ways with the
same number of patches. In the first sequence (Figure 4.5), the discretisation
of the cubes is finer whereas in the second (Figure 4.6) the discretisation of the
walls is finer. The accuracy of the discretisation appears to be higher in the
“middle” scenes (b, c, d and e) and lower in the “extremal” scenes (a and f).
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Scenes a and f are the most complex scenes. Consequently, these scenes should
have a finer discretisation in order to obtain greater accuracy. In other words,
these scenes are the ones most difficult to discretise.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: 64 cubes are grouped very closely together in the center of the
cubical enclosure and then are separated and moved outwards until they almost
touch the walls. The discretisation of the walls (1536 patches) is finer than the
discretisation of the cubes (384 patches).

Scene Fig.4.6a Fig.4.6b Fig.4.6c Fig.4.6d Fig.4.6e Fig.4.6f

IS 5.110 4.809 4.543 4.348 4.483 4.932

Ic
S 6.430 5.678 5.177 4.867 5.015 6.055

IS

Ic
S

0.795 0.847 0.878 0.893 0.894 0.814

Table 4.8: Results for the scenes of Figure 4.6. For each scene, 108 global lines
have been cast.

In Figures 4.7 and 4.8 we compare alternative discretisations. For instance,
from Figures 4.5a and 4.6a we can see that the best discretisation appears to
correspond to Figure 4.5a because the discretisation is finer in the narrow spaces
between the cubes. In contrast, when the cubes are near the walls, greater
precision is obtained when the discretisation of the walls is finer (Figure 4.6f).

In Table 4.9, corresponding to Figure 4.9, we also observe that the relative
discretisation error is higher for more complex scenes.

These experiments suggest that discretisation error may be used to choose a
better discretisation from several alternatives and, while computational error is
deeply related to entropy, discretisation error is related to mutual information.
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Figure 4.7: The vertical axis shows the continuous mutual information (trian-
gles) and the discrete mutual information for the scenes a-to-f in Figures 4.5
(diamonds) and 4.6 (squares).
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Figure 4.8: Discretisation accuracy in vertical axis for the scenes a-to-f in Figures
4.5 (diamonds) and 4.6 (squares).

(a) (b) (c)

Figure 4.9: Three different scenes with a regular discretisation of their surfaces
and the same number of patches (1924).

Scene Fig.4.9a Fig.4.9b Fig.4.9c

IS 2.752 2.823 2.459

Ic
S 3.274 3.375 2.613

δ
v

0.159 0.164 0.059

Table 4.9: IS , Ic
S , and δ

v
for the scenes in Figure 4.9. For each scene, 108 local

lines have been cast.
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4.5 Scene Visibility Complexity in Flatland

In this section, continuous scene visibility mutual information is defined and
computed in flatland. An extensive analysis is undertaken to study the reasons
for the growth in complexity.

4.5.1 Continuous Scene Visibility Mutual Information

Similarly to section 4.2, the continuous mutual information in flatland can be
obtained from the discrete mutual information (3.18) by substituting

• Each state by an infinitesimal length and each summatory by an integral.

• li =⇒ 1
LT

.

• Fij =⇒ F (x, y). Remember that the value of F (x, y) is
cos θx cos θy

2rxy
for

mutually visible points and zero if not (see section 2.1.3).

Thus, continuous mutual information is defined by

Ic
S = log LT +

∫

L

∫

L

1

LT

F (x, y) log F (x, y)dLxdLy

=

∫

L

∫

L

1

LT

F (x, y) log(LT F (x, y))dLxdLy (4.12)

As in 4.3, this integral can be solved by Monte Carlo integration and the com-
putation can be done efficiently by casting uniformly distributed global lines
upon segments [10] (see Figure 2.8). Hence, continuous mutual information can
be approximated by

Ic
S ≈

1

N

N∑

k=1

log(LT F (xk, yk))

=
1

N

N∑

k=1

log(
LT cosθxk

cosθyk

2rxkyk

) (4.13)

where N is the total number of pairs of points considered, which is the total
number of intersections divided by two.

Results and discussion

As we have seen in section 4.4, Ic
S is the least upper bound to IS . This fact,

which is essential in the study of discretisation, is illustrated by the results
obtained in this section. Continuous mutual information is computed for two
sets of scenes: regular polygons and a room with diverse objects. In all cases,
we have solved the Monte Carlo integral by casting 105 global lines, but in the
first case we have also calculated the closed form of Ic

S for a circle, a hexagon,
a square, and an equilateral triangle.

For regular polygons, Table 4.10 groups the discrete and continuous results.
We can see that Ic

S is higher than IS and that the complexity of regular polygons
is very low. In the other scenes (Figure 4.10), we can see once again how
complexity grows with the introduction of objects in the scene.
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number IS

of sides 10 30 50
Ic
S

3 1.168 1.244 1.260 1.284
4 0.732 0.769 0.777 0.788
5 0.550 0.572 0.577 0.583
6 0.452 0.467 0.470 0.475
7 0.393 0.404 0.406 0.408
8 0.353 0.362 0.363 0.366
9 0.326 0.332 0.333 0.336
10 0.306 0.311 0.312 0.314
11 0.290 0.295 0.296 0.297
12 0.279 0.282 0.283 0.284

Table 4.10: IS and Ic
S values for regular polygons, from 3 to 12 sides, with

different regular discretisations (10, 30, and 50 patches for each side).

(a) 1.587 (b) 2.264

(c) 3.290 (d) 3.316

Figure 4.10: Ic
S value for a room with several objects.

Scene exact value MC

circle log π
e

' 0.209 0.209

hexagon log e
√

3−4324(7+4
√

3)

168+97
√

3
' 0.475 0.475

square log 8(1+
√

2)

e1+
√

2
' 0.789 0.788

equilateral
triangle

log 18
e2 ' 1.285 1.284

Table 4.11: Exact Ic
S values for a circle and three regular polygons compared

with results obtained by Monte Carlo simulation (MC) with 105 global lines.
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The closed-form solution of the continuous mutual information integral for
some regular polygons is shown in Table 4.11.

The circle requires special attention. Observe that its complexity is different
from zero: Ic

S = log π
e

3. Since a sphere has zero complexity (Ic
S = 0), we could

expect the same for a circle. But null complexity for the sphere is due to the
fact that, for two spherical patches i and j, form factor Fij is equal to

Aj

AT
(Aj is

the area of patch j and AT is the total area of the sphere). For the same reason,
a uniform line can be generated by selecting two random points on its surface
[74]. However, in the case of a circle, in general Fij 6=

Lj

LT
(Lj is the length

of patch j, LT is the total length of the circle) and selecting pairs of random
points on its perimeter will not yield a uniform density [10]. In flatland, we can
not imagine a scene with less complexity than a circle. In this sense, there is a
significant difference between the 3D and 2D worlds.

4.5.2 Scene Classification in Flatland

In this section we want to present a simple scene classification based on complex-
ity and study the main reasons for the growth in complexity. First we compute
the complexity of some empty scenes and, after that, we analyse other scenes
with objects placed inside.

Some study cases

First, we compute the complexity of four sequences of scenes: the formation of a
12-pointed star, the Von Koch fractal, some different triangles and an L-shaped
room. After that, we study two particular sequences of scenes: a scene with
three objects which increase in size and an expansion of 16 squares from the
center of a scene to its walls.

If we start with a polygon of 24 edges, with a complexity very similar to the
one of a circle, and we continue closing the edges as shown in Figure 4.11, the
complexity increases noticeably, due to the growth of the interaction between
the edges. In the Von Koch fractal (Figure 4.12), a similar thing happens:

(a) 0.232 (b) 1.966 (c) 5.236 (d) 6.915

Figure 4.11: Ic
S value for a 24-sided regular polygon and three 12-pointed stars.

by increasing the number of corners, the correlation increases. In the case
of Figures 4.13 and 4.14, we show how complexity increases when the scene
becomes less regular. Going from an equilateral triangle (Table 4.10 ) to the
triangle in Figure 4.13(d), complexity increases from 1.284 to 2.311. The same
thing happens when we convert a square (Ic

S ≈ 0.788) to the L-shaped figure
in Figure 4.14(d) (Ic

S ≈ 1.319). The importance of the size of the objects is
obvious in Figure 4.15. We have seen that the introduction of objects increases

3N.B. the beauty of this result.
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(a) 1.910 (b) 2.950 (c) 4.258 (d) 5.726

Figure 4.12: Ic
S value for Von Koch fractals.

(a) 1.493 (b) 1.530 (c) 1.787 (d) 2.311

Figure 4.13: Ic
S value for different triangles.

complexity, but the degree of interaction between the objects themselves and
the enclosure depends clearly on their relative size: in general, the bigger the
objects, the greater the complexity. In Figure 4.16, the scene begins with 16
squares almost touching each other and ends with the 16 squares almost touching
the edges of the enclosure. We can see (Figure 4.17) that complexity is maximal
in the first and last scenes and minimal in the middle scene. After these
sequences of scenes, we can confirm that the increase in the number of corners
or the creation of closer corners or spaces produces an increase in complexity.

Increase in complexity near singularities

In this section, we study the evolution of three groups of scenes. In the first
case, a pentagonal star grows until it almost touches the vertexes of a pentagonal
enclosure. In the second case, an interior square rotates in a square enclosure
from a position with parallel sides to a position where the vertexes of the interior
square almost touch the enclosure. In the third case, an interior square advances
until almost touching the walls of a corner in a square enclosure.

In Figure 4.18, a singularity occurs when the points of the star touch the
vertexes of the pentagon. We obtain, in this particular case, 5 independent
scenes. A similar thing happens with a rotating square (Figure 4.19).

When the vertexes of the pentagonal star (Figure 4.18) or the square (Fig-

(a) 0.945 (b) 1.106 (c) 1.218 (d) 1.319

Figure 4.14: Ic
S value for a rectangle and three L-shaped rooms.
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(a) 1.239 (b) 1.627 (c) 1.994

(d) 2.342 (e) 2.712 (f) 3.118

Figure 4.15: Ic
S value for six scenes with three objects increasing in size.

(a) 4.825 (b) 3.817 (c) 3.489

(d) 3.340 (e) 3.284 (f) 3.308

(g) 3.409 (h) 3.641 (i) 4.523

Figure 4.16: Ic
S value for nine scenes which represent an expansion of 16 squares

from the center of a square to its walls.



CHAPTER 4. SCENE VISIBILITY COMPLEXITY 78

a b c d e f g h i
Scene

3.25

3.5

3.75

4

4.25

4.5

4.75

I
sc

Figure 4.17: Representation of Ic
S value corresponding to the expansion in Figure

4.16.

(a) 0.583 (c) 1.450 (f) 2.481 (i) 4.067

Figure 4.18: Ic
S value for a pentagon and three scenes with a pentagonal star

which grows until it almost touches the vertexes of the enclosure.

(a) 3.216 (c) 3.235 (f) 3.340 (i) 3.477

Figure 4.19: Ic
S value for a scene with an interior square which rotates until its

vertexes almost touch the enclosure.

(a) 2.272 (c) 2.308 (f) 2.520 (i) 3.304

Figure 4.20: Ic
S value for a scene with an interior square which advances until

almost touching the walls of a corner.
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a b c d e f g h i
Scene

0

1

2

3

4

I
sc

Fusion

Rotation

Star

Figure 4.21: Representation of Ic
S corresponding to the scenes in Figures 4.18

(star), 4.19 (rotation) and 4.20 (fusion).

ure 4.19) almost touch their respective enclosures, the following proposition is
fulfilled:

Proposition 2 The complexity IS of a scene composed of the union of N iden-
tical subscenes with complexity IS

′ is equal to IS
′ plus the logarithm of N .

Proof. Let S be a scene composed of N equal subscenes S ′k with k ∈ {1..N}.
Thus, we have that S =

⋃
k∈{1..N} S′k. Let us also suppose that all the subscenes

have the same discretisation and P and P ′ represent the set of patches of S and
S′k respectively. Thus, if l′i and {F ′

ij} represent, respectively, the relative length

of a segment in a subscene and the form factor matrix in a subscene, then li =
l′i
N

and Fij = F ′
ij and it can be shown that

IS =
∑

i∈P

∑

j∈P

liFij log
Fij

lj

= N
∑

i∈P ′

∑

j∈P ′

liFij log
Fij

lj

= N
∑

i∈P ′

∑

j∈P ′

l′iF
′
ij

N
log(

NF ′
ij

l′j
)

=
∑

i∈P ′

∑

j∈P ′

l′iF
′
ij log

F ′
ij

l′j
+
∑

i∈P ′

∑

j∈P ′

l′iF
′
ij log N

= I ′d + log N
∑

i∈P ′

l′i = I ′d + log N (4.14)

2

Results illustrating this proposition are shown in Table 4.12.
In Figure 4.20, a singularity occurs when the internal square adheres to the

right upper hand corner of the square, and thus recreates the L-shaped room
as in Figure 4.14c. So, we can see that when we convert a square scene with a
square object inside it to an empty L-shaped scene, this produces a collapse in
complexity

Ic
S(Fig.4.20i) ≈ 3.304 =⇒ Ic

S(Fig.4.14c) ≈ 1.218
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square pentagonal
rotation star

Ic
subscene 1.474 1.750

number of
subscenes (N)

4 5

log N 2 2.322
Ic
subscene + log N 3.474 4.072

Ic
S 3.477 4.067

Table 4.12: Analysis of Ic
S for Figures 4.19i and 4.18i.

Figure 4.21 shows the evolution of the three sequences of scenes which we
have just discussed. We can observe that the scene with the rotating square has
the most stable complexity. In the star scene, as the size of the star increases,
the correlation of the scene changes dramatically.

0 2 4 6 8 10
Height

1

1.5

2

2.5

3

3.5

4

I
s

Square

0.7886

Figure 4.22: Analysis of Ic
S for a rectangle. The horizontal axis represents the

number of times that the height is greater than the base.

The strongest singularity in a scene is produced when the space between the
edges disappears. Figure 4.22 shows that when the height of a rectangle tends
to zero, complexity tends to infinity. The same happens with concentric circles,
concentric squares, and so on. In conclusion, complexity grows as singularities
are approached.

Scene classification

From the previous results, we present a tentative scene classification:

• Low complexity. Simple empty scenes (without objects), like regular poly-
gons, or scenes with few objects of low relative size, as in Figure 4.15a-c.

• Medium complexity. Scenes with few big objects, as in Figure 4.15d-f,
scenes with more objects but with low relative size, as in Figure 4.16, or
scenes with edges not too close to each other, as in Figures 4.19 and 4.20.

• High complexity. Scenes with a lot of objects, as in Figure 3.12, or scenes
with very narrow spaces, as in Figure 4.11.
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• Very high complexity. When all the edges of the scene are very close to
each other, like very close concentric circles, a rectangle that is so long
and narrow that it looks like a line, or a fractal scene whose walls form
infinite almost closed cavities.

4.6 Summary

After analysing the notion of complexity, we have proposed in this chapter
continuous scene mutual information (which expresses the degree of correlation
between all the surfaces of a scene and measures with maximum accuracy the
information transfer) as the main measure of the scene visibility complexity and
discrete scene mutual information as the measure of the visibility complexity of
a discretised scene.

We have solved the continuous mutual information integral by Monte Carlo
integration, and the computation has been carried out efficiently by casting
uniformly distributed global and local lines. We have also seen that discrete
and continuous mutual information fulfil the two following properties:

• If any patch is divided into two or more patches, the discrete mutual
information IS of the new scene increases or remains the same.

• The continuous scene visibility mutual information Ic
S is the least upper

bound to the discrete scene visibility mutual information IS .

We have also described how continuous mutual information expresses the dif-
ficulty in obtaining a precise discretisation. So, the higher the scene complexity,
the more difficult it is to obtain an accurate discretisation and probably more
refinements will be necessary. The difference between continuous and discrete
mutual information can be interpreted as the discretisation error, representing
the loss of information transfer due to the discretisation.

We have calculated the scene complexity for many different cases and some
experiments have illustrated the main reasons for the growth in complexity.
Finally, a tentative scene classification has been proposed in flatland.



Chapter 5

Scene Radiosity Entropy

and Complexity

In this chapter, we extend our previous results to the radiosity setting. Thus,
measures for the entropy and complexity of a scene, taking diffuse illumination
into account, are obtained by using a different pair of discrete and continuous
Markov chains. A general proposition for visibility, radiosity, and importance
enables us to predict the gain in mutual information resulting from refinement.
Most of the contents of this chapter can be found in [21, 22].

5.1 From Visibility to Radiosity

In the previous chapters, we have only considered the visibility of a scene. In
this section we make a leap forward and set the basis for the study of radiosity
complexity.

Our work on visibility (chapters 3 and 4) has been based on the existence
of a Markov chain and the knowledge of its stationary distribution. Thus, to
study the complexity of a scene with illumination, we need to find an analog of
the form factor matrix for the radiosity setting. This analog appears naturally
when the null variance probability transition matrix (2.46)

Pij = pj|i =
ρiFijBj

Bi −Ei

(5.1)

is considered (section 2.1.10). This matrix corresponds to the transition proba-
bilities that lead to null variance estimators [75]. The null variance matrix must
have a preferred position between the different possible transition matrices.

The left eigenvalue property [13] is used to obtain (without normalization)
the stationary distribution

pi = Ai

Bi −Ei

ρi

Bi = AiB
in
i Bout

i (5.2)

where Bin
i = Bi−Ei

ρi
is the incoming radiosity and Bout

i = Bi is the outgoing
radiosity. It is easy to check that these probabilities fulfill the Bayes theorem

82
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pij = pipj|i = qjpi|j :

Ai

Bi −Ei

ρi

Bi

ρiFijBj

Bi −Ei

= Aj

Bj −Ej

ρj

Bj

ρjFjiBi

Bj −Ej

(5.3)

pij = AiBiFijBj = AjBjFjiBi (5.4)

This expression is an extended reciprocity relation (without normalization). Thus,
the analogy is complete.

5.2 Discrete Channel

From the above assumptions, the entropy and mutual information can be defined
straightforwardly for the radiosity setting using the following analogy:

• Ai =⇒ Ai = Ai
Bi−Ei

ρi
Bi

• AT =⇒ AT =
∑

i Ai

• ai = Ai

AT
=⇒ ai = Ai

AT

• Fij =⇒ Fij =
ρiFijBj

Bi−Ei

This analogy can be interpreted as a mapping of a given scene into a new
(imaginary) scene, transforming the areas and the transition probabilities ac-
cording to the above formulae. Studying the radiosity complexity of the original
scene corresponds to studying the visibility complexity of the new scene.

5.2.1 Definitions

Now we can give the following definitions:

• Discrete scene radiosity entropy

HS = −

np∑

i=1

ai

np∑

j=1

Fij log Fij (5.5)

• Positional entropy

HP = −

np∑

i=1

ai log ai (5.6)

• Discrete scene radiosity mutual information

IS =

np∑

i=1

np∑

j=1

aiFij log
Fij

aj

(5.7)

This mapping from visibility to radiosity can also be extended to the con-
cept of complexity. Thus, the discrete scene radiosity mutual information IS

represents the complexity of a discretised scene with diffuse illumination.
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5.2.2 Particular Cases

To illustrate the behaviour of the above mapping, we study two particular cases:

1. Constant radiosity

Let us consider the case where the resulting radiosity is constant for all
patches. This will avoid introducing any additional complexity with re-
gard to the visibility case and therefore the transformation (or analogy)
considered above will become the identity transformation.

To obtain constant radiosity B everywhere, we can easily find from the
radiosity equation (2.6) that we must have B = ρiB + Ei, for all i. Then
Bin

i = B−Ei

ρi
= ρiB

ρi
= B and this means that

Ai

AT

=
AiB

2

AT B2
=

Ai

AT

(5.8)

Fij =
ρiFijBj

Bi −Ei

= Fij (5.9)

We have computed the visibility and radiosity complexity for the labyrinth
scene (Figure 5.1), with ρi + Ei = 1 for each patch. In this case, the
radiosity is equal to 1 everywhere. The results shown in Table 5.1 confirm
the theoretical prediction.

Setting HP , HP HS, HS IS, IS

Visibility 10.6883 6.47804 4.21022

Radiosity 10.6842 6.47833 4.20591

Table 5.1: Results for the labyrinth scene of Figure 5.1, with constant radiosity
everywhere. For this case, both visibility and radiosity complexity are the same.

Figure 5.1: Labyrinth scene used to show the equivalence of visibility and ra-
diosity complexity when radiosity is constant everywhere (see Table 5.1).
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2. Empty sphere with one source patch and constant reflectance

Let us consider the interior of an empty sphere with area AS and constant
reflectivity ρ, and emissivity Es along one source patch with area As.
From the fact that Fij =

Aj

AS
, the solution for any patch i is

Bi =
ρ

1− ρ

AsEs

AS

+ Ei (5.10)

Consequently, for any patch, if we take

B = Bi −Ei =
ρ

1− ρ

AsEs

AS

(5.11)

we have

Bin
i =

Bi −Ei

ρ
=

B

ρ
(5.12)

After some algebra we find

AT =
∑

i

Ai =
B2

ρ2
AS (5.13)

Thus, for any patch (but not the source), we have

ai =

B2

ρ
Ai

B2

ρ2 AS

=
ρAi

AS

(5.14)

and for the source patch

as =

B
ρ
As(B + Es)

B2

ρ2 AS

=
ρAs(B + Es)

ASB
=

ρAs

AS

+ (1− ρ) (5.15)

On the other hand, for a patch j which is not the source

Fij =
ρiFijBj

Bi −Ei

=
ρAj

AS

= aj (5.16)

and

Fis =
ρiFisBs

Bi −Ei

=
ρAs(B + Es)

ASB
=

ρAs

AS

+ (1− ρ) = as (5.17)

Hence, the net result is the transformation of the sphere into a sphere in
which the relative area of each non-source patch has shrunk by a factor
equal to the reflectivity, and in which the source patch has expanded to
fill the gap. Thus, IS = 0.

5.2.3 Empirical Results

We have computed mutual information IS and entropy HS for the Cornell box
scene shown in Figure 5.2 and for the tetrahedron in Figure 4.3 . Six different
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discretisations have been generated for the Cornell box scene 1 and three for
the tetrahedron scene. Observe that for IS and HS we give three independent
color components (R,G,B).

In Tables 5.2 and 5.3, we present the results corresponding to the meshes
in Figures 5.2 and 4.3. In both figures, the discrete mutual information reflects
that a finer mesh is indeed a better mesh. Among equally fine meshes, the
regular mesh is quantified to be the worst. The erratical behaviour of IS , with
few patches, is due to the inaccuracy of the radiosity solution obtained with so
a coarse discretisation. In Figure 5.2, mutual information is very similar for all
the channels, whereas entropy in the red channel is clearly the highest. In Figure
4.3, mutual information of the red channel is the highest, whereas the mutual
information of the blue channel is zero (there is no information transfer), due to
the fact that there is only one surface in the tetrahedron with a blue component.
On the other hand, entropy is maximum in the blue channel and minimum in
the green one.

(I.a) (I.b) (I.c)

(II.a) (II.b) (II.c)

Figure 5.2: (a)Three regular and (b) three non-regular discretisations for the
Cornell box scene.

5.3 Continuous Radiosity Mutual Information

In section 4.2, continuous visibility mutual information Ic
S has been derived from

discrete visibility mutual information IS . In a similar way, continuous radiosity
mutual information I

c
S can be obtained from IS with the following substitutions:

• Ai = Ai
Bi−Ei

ρi
Bi =⇒ B(x)B(x)−E(x)

ρ(x)

1The non-regular mesh has been generated with a mutual-information-based oracle which
will be introduced in the following chapter.
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Scene Patches Lines (106) IS(R,G,B) HS(R,G,B)

Fig.5.2I.a 121 10 (0.935, 0.965, 0.960) (3.138, 2.636, 2.285)
Fig.5.2I.b 481 10 (0.958, 0.974, 0.959) (4.210, 3.658, 3.278)
Fig.5.2I.c 1924 100 (1.004, 1.014, 0.993) (6.170, 5.616, 5.243)
Fig.5.2II.a 121 10 (1.009, 1.028, 1.014) (3.407, 2.989, 2.694)
Fig.5.2II.b 493 10 (1.017, 1.017, 0.996) (5.077, 4.538, 4.214)
Fig.5.2II.c 1933 100 (1.052, 1.046, 1.020) (6.849, 6.339, 6.059)

Table 5.2: IS and HS for the Cornell box scene (Figure 5.2) with six different
discretisations.

Scene Patches Lines (106) IS(R,G,B) HS(R,G,B)

Fig.4.3a 4 10 (1.000,1.000,0.000) (0.000,0.000,1.362)
Fig.4.3b 151 10 (2.912,2.158,0.000) (4.003,3.077,6.117)
Fig.4.3c 793 10 (3.432,2.765,0.000) (5.696,4.854,8.259)

Table 5.3: IS and HS for the tetrahedron (Figure 4.3) with three different dis-
cretisations.

• AT =
∑

i Ai
Bi−Ei

ρi
Bi =⇒ A

c
T =

∫
S

B(x)B(x)−E(x)
ρ(x) dAx

• Fij =
ρiFijBj

Bi−Ei
=⇒ F(x, y) = ρ(x)F (x,y)B(y)

B(x)−E(x)

• aiFij =⇒ F (x,y)B(x)B(y)
Ac

T

where S represents the total surface of the scene, F (x, y) is the point-to-point
form factor, B(x), E(x), and ρ(x) are, respectively, the radiosity, self-emitted
radiosity and reflectivity at x ∈ S.

From the continuous radiosity equation (2.4) we can see that

∫

S

F(x, y)dAy =

∫

S

ρ(x)F (x, y)B(y)

B(x) −E(x)
dAy

=
B(x) −E(x)

B(x) −E(x)
= 1 (5.18)

Thus, the continuous radiosity mutual information is given by

I
c
S =

∫

S

∫

S

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

B(x)−E(x)
ρ(x)

B(y)−E(y)
ρ(y)

dAxdAy

=

∫

S

∫

S

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy (5.19)

where Bin(x) = B(x)−E(x)
ρ(x) represents the incoming radiosity at point x.

Similarly to Ic
S , which represents the scene complexity in the visibility set-

ting, I
c
S quantifies the scene radiosity complexity. It expresses with maximum

accuracy the information transfer in a scene with illumination and also the dif-
ficulty in obtaining an accurate discretisation. Note that I

c
S depends on the

geometry, radiosity, emittance and reflectance of the scene.
Expression (5.19) could be computed using the same approach as for the

continuous visibility mutual information whenever we know the exact radiosity
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distribution over the scene and the value of A
c
T . Generally we know neither,

so we have to make do with approximate values, computed using a piecewise
constant function over all patches. The accuracy of the value found for I

c
S will

depend on the quality of this distribution. Thus, contrary to the visibility case,
we can not compute a continuous radiosity mutual information independent of
any discretisation.

Applying the following substitutions: A
c
T by AT , B(x) by Bi, B(y) by Bj ,

E(x) by Ei, E(y) by Ej , and ρ(x) by ρi, ρ(y) by ρj , and proceeding as in the
visibility case (section 4.3), we obtain by Monte Carlo integration

I
c
S ≈

AT

N

N∑

k=1

BiBj

AT

log
(

AT cosθxk
cosθyk

πr2
xkyk

Bin
i Bin

j

)
(5.20)

where N represents the number of local lines or the number of segments of
global lines.

As in the case of visibility, we have that

• The difference between I
c
S and IS represents the loss of information transfer

due to the discretisation. Thus, the global discretisation error for radiosity
is given by

δr = I
c
S − IS (5.21)

• Between different discretisations of the same scene, the most precise will
be the one that has the highest discrete mutual information IS .

5.3.1 Particular Cases

From a continuous perspective, we can now analyze the same cases we dealt
with in section 5.2.2:

1. Constant radiosity

When radiosity B is constant everywhere, we have

B(x)−E(x)

ρ(x)
= B(x) = B (5.22)

and thus

A
c
T =

∫

S

B(x)−E(x)

ρ(x)
B(x)dAx = B2AT (5.23)

Thus continuous radiosity mutual information becomes

I
c
S =

∫

S

∫

S

F (x, y)B2

B2AT

log
B2AT F (x, y)

B2

=

∫

S

∫

S

F (x, y)

AT

log AT F (x, y) (5.24)

which is the continuous visibility mutual information.

2. Empty sphere with one source patch and constant reflectance

For the discrete case, we know that IS = 0. Thus, the continuous mutual
information should also be zero.
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It can be proved that the radiosity solution for the continuous case is
the same as for the discrete one. Thus, using the result of section 5.2.2,

A
c
T = AT = B2

ρ2 AS , continuous mutual information becomes

I
c
S =

∫

S

∫

S

F (x, y)B2

B2

ρ2 AS

log
AS

B2

ρ2 F (x, y)

B2

ρ2

=

∫

S

∫

S

F (x, y)ρ2

AS

log ASF (x, y) = 0 (5.25)

because in a sphere F (x, y) = 1
AS

.

5.3.2 Empirical Results

In Table 5.4, we present the scene complexity I
c
S for the scenes in Figures 4.3,

4.4, 4.9, 5.3 and 5.4. In this table, we can observe how I
c
S varies with the number

of patches. This drawback is due to the fact that we take constant radiosity
on each patch. Obviously, the precision of I

c
S increases with the number of

patches. From the results corresponding to Figure 5.4, we see that the scene
complexity increases with the number of emitter patches. Thus, as expected,
the collocation and the number of the light sources changes the correlation in a
scene dramatically.

(a) (b)

Figure 5.3: Two different discretisations for the same scene. The walls are light
sources.

(a) (b)

Figure 5.4: (a) The scene has only one light source on the ceiling. (b) All the
surfaces of the cubes, in the center of the scene, are light sources.
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(a) (b)

Figure 5.5: Two different discretisations of the Cornell box scene.

In Table 5.5, corresponding to Figures 5.2 and 5.5, we show how IS depends
on the strategy (oracle) used in the refinement process. Observe that IS is
larger in the scenes obtained with a mutual-information-based oracle (Figure
5.2II) which will be introduced in the next chapter. Thus, from an information-
theory point of view, the best results, compared with the ones obtained with a
regular mesh, are found using an oracle based on the variation of the radiosity
kernel. In most of the experiments, we can also note that, for finer meshes, IS

increases and I
c
S decreases. Observe that, in Figure 5.5b, the values of IS are

higher than the values of I
c
S . This fact is due to an insufficient number of lines

cast.

Scene Patches Lines (106) I
c
S(R,G,B)

Fig.4.4a 19 10 (1.676,1.676,1.676)
Fig.4.4b 196 10 (1.654,1.654,1.654)
Fig.4.4c 826 10 (1.286,1.286,1.286)
Fig.4.9a 1924 100 (1.163,1.163,1.163)
Fig.4.9b 1924 100 (1.129,1.129,1.129)
Fig.4.9c 1924 100 (1.375,1.375,1.375)
Fig.5.3a 444 50 (2.443,2.443,2.443)
Fig.5.3b 759 100 (2.455,2.455,2.455)
Fig.5.4a 2029 100 (2.149,1.481,1.980)
Fig.5.4b 546 100 (5.087,5.300,0.541)
Fig.4.3a 4 10 (3.219,3.197,0.000)
Fig.4.3b 151 10 (3.419,3.102,0.000)
Fig.4.3c 793 10 (3.629,3.158,0.000)

Table 5.4: I
c
S for different scenes.

As we can see in Table 5.6, corresponding to Figure 5.4a, similar to the
computation of IS , the value of IS decreases with the number of local or global
lines used to compute the form factors. Observe also that the computational
cost of I

c
S is much lower than the cost of IS .

5.4 Patch Refinement

In this section, we present a proposition that supports our preliminary results
(section 4.4) and allows us to calculate the gain in mutual information resulting
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Scene Patches Lines (106) IS(R,G,B) I
c
S(R,G,B)

Fig.5.2I.a 121 10 (0.935, 0.965, 0.960) (1.132, 1.144, 1.107)
Fig.5.2I.b 481 10 (0.958, 0.974, 0.959) (1.055, 1.066, 1.037)
Fig.5.2I.c 1924 100 (1.004, 1.014, 0.993) (1.044, 1.051, 1.024)
Fig.5.5a 7744 1000 (1.027, 1.028, 1.013) (1.032, 1.032, 1.016)

Fig.5.2II.a 121 10 (1.009, 1.028, 1.014) (1.194, 1.194, 1.138)
Fig.5.2II.b 493 10 (1.017, 1.017, 0.996) (1.082, 1.080, 1.043)
Fig.5.2II.c 1933 100 (1.052, 1.046, 1.020) (1.070, 1.064, 1.032)
Fig.5.5b 6595 500 (1.078, 1.064, 1.046) (1.056, 1.048, 1.027)

Table 5.5: I
c
S and IS for different discretisations of the same scene.

Lines (106) IS(R,G,B) I
c
S(R,G,B)

1 (3.563, 3.006, 5.366) (2.141, 1.472, 1.996)
10 (2.269, 1.631, 2.519) (2.145, 1.479, 1.948)
100 (2.094, 1.456, 1.605) (2.149, 1.481, 1.980)

Table 5.6: I
c
S and IS for the scene in Figure 5.4a.

from subdivision of scene patches. We first study the problem for a general
Markov Chain and next consider the application to scene visibility, radiosity,
and importance.

5.4.1 State Refinement and Continuous versus Discrete

Mutual Information

Proposition 3 Consider a discrete Markov chain over a set of states labeled
i, j = 1, . . . , n, with transition probability matrix P = (Pij) and stationary dis-
tribution w = (w1, w2, . . . , wn) which satisfies the reciprocity relation wiPij =
wjPji (∀i, j). When a state i is refined into m sub-states ik (k = 1, . . . , m) such
that

(a) wik
Pikj = wjPjik

∀ik, j (reciprocity relation with the sub-states);

(b) Pji =
∑m

k=1 Pjik
∀j (the sub-states ik “cover” i),

mutual information increases or remains the same.

Proof. Let us imagine a discrete random walk with discrete mutual informa-
tion

I =
n∑

i=1

n∑

j=1

wiPij log
Pij

wj

(5.26)

We must show that, if any state is discretized into m sub-states, the discrete
mutual information I ′ of the new random walk fulfils ∆I = I ′− I ≥ 0. Without
loss of generality, we divide the nth state into m sub-states n1, n2, . . . , nm. Thus,
we have

I ′ =

n−1∑

i=1

n−1∑

j=1

w′iP
′
ij log

P ′
ij

w′j
+

n−1∑

i=1

m∑

k=1

w′iP
′
ink

log
P ′

ink

wn′
k

+

m∑

k=1

n−1∑

j=1

w′nk
P ′

nkj log
P ′

nkj

w′j
+

m∑

k=1

m∑

l=1

w′nk
P ′

nknl
log

P ′
nknl

w′nl

(5.27)
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where

• wi = w′i for 1 ≤ i < n

• wn =
∑m

k=1 w′nk

• Pij = P ′
ij for 1 ≤ i, j < n

• Pin =
∑m

k=1 P ′
ink

for 1 ≤ i < n

Since wiPij log
Pij

wj
= wjPji log

Pji

wi
, ∀i, j, we have

I = 2
n−1∑

i=1

n∑

j=i+1

wiPij log
Pij

wj

+
n∑

i=1

wiPii log
Pii

wi

(5.28)

Then

I ′ − I = 2

n−1∑

i=1

(
m∑

k=1

wiPink
log

Pink

wnk

− wiPin log
Pin

wn

)

+

m∑

k=1

m∑

l=1

wnk
Pnknl

log
Pnknl

wnl

− wnPnn log
Pnn

wn

(5.29)

where the coincident terms in I and I ′ have been deleted. Applying the above
hypotheses and the concavity of the logarithm function for non-negative num-
bers (2.67)

n∑

i=1

ai log
ai

bi

≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(5.30)

we can conclude that
∆I = I ′ − I ≥ 0 (5.31)

2

Corollary 1 Continuous mutual information Ic of a scene which fulfils the
conditions of the above theorem is the least upper bound to discrete mutual in-
formation I.

Proof. Continuous mutual information between two continuous random vari-
ables X and Y is the limit of the discrete mutual information between their
discretized versions [15]. Hence, the statement that Ic

S is the least upper bound
to IS immediately follows from the above proposition. 2

5.4.2 Patch-to-patch Increase in Mutual Information

If we consider a scene with planar patches, the increase in mutual information
between two planar patches i and j when subdividing i into m sub-patches is

(∆I)ij = 2

((
m∑

k=1

wik
Pikj log

Pikj

wj

)
− wiPij log

Pij

wj

)

= 2

((
m∑

k=1

wik
Pikj log Pikj

)
− wiPij log Pij

)
(5.32)
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This can be obtained from (5.28) and (5.29), where the second half of these
formulae is zero, and from the conditions of the proposition. For a regular
subdivision, wik

= wi

m
, we have

(∆I)ij = 2

((
wi

m

m∑

k=1

Pikj log Pikj

)
− wiPij log Pij

)
(5.33)

and it can be shown that the theoretical maximum possible increase in I happens
when, for all k except one, Pikj = 0. The one that is not zero can be shown to
be equal to mPij . Thus the maximum possible increase in I is given by

max((∆I)ij) = 2(wiPij log mPij − wiPij log Pij) = 2wiPij log m (5.34)

If we sum over j, we will obtain the maximum possible increase when dividing
a given patch i

∑

j

max((∆I)ij ) =
∑

j

2wiPij log m = 2wi log m (5.35)

5.4.3 Application to Visibility

Taking wi = Ai

AT
and Pij = Fij , it is easy to see that the hypotheses of proposi-

tion 3 are fulfilled. Thus, from (5.32), the increase in mutual information is, in
this case,

(∆I)v
ij = 2

((
m∑

k=1

aik
Fikj log

Fikj

aj

)
− aiFij log

Fij

aj

)

= 2

((
m∑

k=1

aik
Fikj log Fikj

)
− aiFij log Fij

)
(5.36)

Thus, the maximum increase upon a regular subdivision is

max((∆I)v
ij ) = 2aiFij log m (5.37)

and the maximum possible increase when dividing a given patch i is 2ai log m.

5.4.4 Application to Radiosity

In the radiosity setting, we consider the following transition probabilities

Pij =

∫
Ai

∫
Aj

F (x, y)B(x)B(y)dAxdAy

∫
Ai

B(x)B(x)−E(x)
ρ(x) dAx

(5.38)

These are an extension to the continuous case of the discrete null variance
probabilities (2.46) and fulfil

∑
j Pij = 1 due to the additivity of the integral

over its domain S, where S = ∪iAi, and the fact that the radiosities fulfil the
continuous radiosity equation (2.4)

B(x) = E(x) + ρ(x)

∫

S

F (x, y)B(y)dAy (5.39)
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It can be easily checked that the stationary probabilities (without normalization)
are

wi =

∫

Ai

B(x)
B(x) −E(x)

ρ(x)
dAx (5.40)

and the reciprocity relation wiPij = wjPji is fulfilled. The normalising factor
of wi is

∑

i

∫

Ai

B(x)
B(x) −E(x)

ρ(x)
dAx =

∫

S

B(x)
B(x) −E(x)

ρ(x)
dAx (5.41)

If we divide patch i into i1 and i2, it is easy to prove that the hypotheses of
proposition 3 are fulfilled. The radiosity case reverts to the visibility case when
B(x) = k, where k is a constant, and this happens whenever E(x) = k(1−ρ(x)),
∀x.

Now, let us suppose that radiosities and reflectivities are constant along

each patch. From section (5.1), we have wi = AiBi
(Bi−Ei)

ρi
and Pij =

ρiFijBj

Bi−Ei
.

These quantities can be considered a kind of generalized area and form factor,
respectively, by analogy with the visibility case. The Pij probabilities were
found to be the null variance transition probabilities for a gathering random
walk (section 2.1.10).

Since the hypotheses of proposition 3 are fulfilled, from (5.32) we obtain the
increase in mutual information:

(∆I)r
ij = 2

BiBj

AT

((
m∑

k=1

Aik
Fikj log Fikj

)
−AiFij log Fij

)
(5.42)

5.4.5 Application to Importance

The continuous importance I(x), given initial importance V (x), is the solution
to the integral equation for importance at a point x [59]:

I(x) = V (x) +

∫

S

ρ(y)F (x, y)I(y)dAy (5.43)

Consider now the transition probability

Pij =

∫
Ai

∫
Aj

F (x, y)ρ(x)ρ(y)I(x)I(y)dAxdAy∫
Ai

ρ(x)I(x)(I(x) − V (x))dAx

(5.44)

Similarly to the radiosity case, we have
∑

j Pij = 1 due to the additivity of the
integral over its domain S, where S = ∪jAj , and the fact that the importances
fulfil the importance integral equation. The equilibrium probabilities wi are
(without normalization)

wi =

∫

Ai

ρ(x)I(x)(I(x) − V (x))dx (5.45)

and the reciprocity relation wiPij = wjPji is fulfilled. As in the case of radiosity,
if we divide patch i into i1 and i2, the hypotheses of the proposition 3 are
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fulfilled. It can be seen that for ρ(x)I(x) = k, ∀x, which occurs when we take
V (x) = k( 1

ρ(x) − 1), the importance case reverts to the visibility case.

Now, let us suppose that importances and reflectivities are constant along
each patch. In this case, wi = AiρiIi(Ii−Vi) and Pij =

ρjFjiIj

Ii−Vi
. When Vi = δik,

we have the null variance transition probabilities for a shooting random walk
(section 2.1.10).

Since the hypotheses of the proposition 3 are fulfilled, this means that the
increase in mutual information may be now calculated in the importance setting
2.

5.5 Summary

In this chapter, we have obtained measures for the entropy and complexity
of a scene with diffuse illumination by using a different pair of discrete and
continuous Markov chains. To study the complexity of a scene with illumination,
we have applied an analog of the form factor matrix for the radiosity setting.
The feasibility of this approach has been illustrated by a set of experiments.

Continuous scene radiosity mutual information expresses with maximum ac-
curacy the information transfer in an illuminated scene. Similarly to the visibil-
ity setting, it represents the scene radiosity complexity and can be interpreted
as the difficulty in obtaining an accurate meshing. We solved the mutual infor-
mation integral by Monte Carlo integration, using an approximated solution for
the radiosity.

To deal with the loss of information due to the discretisation, a general
proposition gives us the increase in mutual information when a patch is sub-
divided into n subpatches. This increase has been calculated for visibility, ra-
diosity, and importance. This proposition is fundamental for understanding the
behaviour of the discrete mutual information with respect to the continuous
mutual information.

2In this thesis, information theory measures for importance are not developed further.



Chapter 6

Refinement Criteria

As noted in the introduction, in the radiosity method, scene discretisation has to
accurately represent illumination variations but it has to avoid unnecessary re-
finements that would increase the computational cost. To achieve this objective,
in this chapter we introduce some mutual-information-based refinement criteria
(oracles) for hierarchical radiosity which are based on the information-theory
principles described in chapters 4 and 5.

This chapter is organized as follows. First, we analyze the feasibility of mu-
tual information to be used as the basis for refinement criteria. Second, from
the results obtained in section 5.4.2 we propose a first oracle based on an hy-
pothetical increase in mutual information when a patch is refined. Third, we
present a refinement criterion based on the loss of information transfer between
two patches due to the discretisation. And finally, an oracle based on the infor-
mation transfer loss of a patch is introduced for the visibility in flatland. Most
of the contents of this chapter have been presented in [21, 22, 25].

6.1 Mutual Information Maximization

The oracles we will propose in this chapter have a common aim: to maximize
the discrete mutual information. With this objective in mind, two approaches
are analyzed:

• In the first approach, an oracle based on the increase in mutual informa-
tion when a patch is refined (5.42) is theoretically explored. This approach
presents some drawbacks which will be analyzed.

• The second approach is based on the discretisation error and avoids the
disadvantages of the first one. It can be implemented on any hierarchical
radiosity algorithm.

In this section, we show experimentally how the objective of maximizing
the discrete mutual information can guide us towards an optimal discretisation.
From (5.36), we analyze how mutual information varies for some common patch
configurations and some simple scenes, and we provide some evidence that an
optimal subdivision obtained by mutual information maximization corresponds
satisfactorily to an optimal subdivision in terms of the mean square error.

96



CHAPTER 6. REFINEMENT CRITERIA 97

The following results can be obtained from formula (5.36), form factor prop-
erties (section 2.1.3) and some closed form formulae for the unoccluded form
factors [12, 82, 33]:

Partially occluded pair of patches

Consider the subdivision of patch i into two sub-patches (Figure 6.1a):

• Proposition 4 Of all the subdivisions of i with one sub-patch totally oc-
cluded to j, the maximum mutual information increase corresponds to the
discontinuity mesh.

Proof. Patch i is divided into sub-patches ia and ib, where ib is totally
occluded and ia has one part ic unoccluded and one part id occluded.
Then, from (5.36) and assuming without loss of generality that AT = 1,

(∆I)v
ij = 2(Aia

Fiaj log
Fiaj

Aj

+ Aib
Fibj log

Fibj

Aj

−AiFij log
Fij

Aj

)

= 2((Aic
Ficj + Aid

Fidj) log
(Fjic

+ Fjid
)

(Aic
+ Aid

)
−AiFij log

Fij

Aj

)

= 2(Aic
Ficj log

Fjic

(Aic
+ Aid

)
−AiFij log

Fij

Aj

) (6.1)

The maximum is obtained when Aid
= 0, i.e. when subdivision is made

according to discontinuity meshing. 2

j

i

k

j

i
0

1

(a) (b)

Figure 6.1: (a) Partially occluded patch pair. (b) Subdivision of a patch perpen-
dicular to the radiosity gradient. The position of the cutting line is parametrized
by the relative distance 0 ≤ l ≤ 1 to one edge.

• Proposition 5 When the point-to-point form factor F (x, y) is approxi-
mately constant for x in the unoccluded part of i and y in j, the maximum
increase in mutual information corresponds to the discontinuity mesh.

Proof. Patch i is divided into sub-patches ia and ib, where ia is totally
unoccluded and ib has one part ic occluded and one part id unoccluded.



CHAPTER 6. REFINEMENT CRITERIA 98

Then, from (5.36) and taking AT = 1,

(∆I)v
ij = 2(Aia

Fiaj log
Fiaj

Aj

+ Aib
Fibj log

Fibj

Aj

−AiFij log
Fij

Aj

)

= 2(Aia
Fiaj log

Fiaj

Aj

+ Aid
Fidj log

Fjid

(Aid
+ Aic

)
−AiFij log

Fij

Aj

)

≤ 2(Aia
Fiaj log

Fiaj

Aj

+ Aid
Fidj log

Fjid

Aid

−AiFij log
Fij

Aj

) (6.2)

where the right-hand side of the inequality corresponds to the mutual
information increase in the discontinuity meshing case, where we have
assumed, by hypothesis, Fiaj = Fidj . 2

Two square patches with common edge

Consistent with observations in [9], orthogonal splitting (Figure 6.2a) leads to
only a small gain in mutual information 1. Nothing is gained by orthogonal split-
ting in the middle. When splitting along a line parallel with the common edge
(Figure 6.2b) the maximum gain in mutual information results when splitting
at a 40% relative distance from the edge (Figure 6.2c).
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(a) (b) (c)

Figure 6.2: (c) Discrete mutual information, on the vertical axis, when dividing
orthogonal (a,squares) and parallel (b,diamonds) to the common edge. Hori-
zontal axis represents the displacement from one side edge (a) or the common
edge (b).

Three square patches with common edges

When subdividing a patch in a corner (Figure 6.3), the maximum mutual in-
formation gain 2 is obtained at a 39% relative distance from the edge. The
small displacement (from 40% to 39%) towards the edge with respect to the
previous case is due to the small positive gradient of mutual information for the
orthogonal subdivision (see Figure 6.3b, squares).

Empty cube

In Figure 6.4, the resulting maximum mutual information subdivision is a bit
displaced towards the edges with respect to the regular one. Figure 6.5 shows

1In the mutual information computation we only consider the two patches involved.
2In the mutual information computation we only consider the three patches involved.
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(a) (b)

Figure 6.3: (b) Discrete mutual information, on the vertical axis, when subdi-
viding a patch in a corner (a). The horizontal axis represents the distance from
the parallel division to one common edge.

an example with more subdivisions.
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(a) (b) (c) (d)

Figure 6.4: (d) Discrete mutual information, on vertical axis, for an empty
cube. The horizontal axis represents the relative displacement of the nearest
subdivision to a common edge, ranging from 0 to 10. (b) corresponds to the
optimal case, with a value of almost 6, (a) with a value of 2 and (c) with a value
of 8.

Mutual information maximization and mean square error

Consider two square patches, i and j, with the following characteristics: Bj is
constant over j, F (x, y) is approximately constant for x ∈ Si and y ∈ Sj and
the reflectivity is constant along each patch. Consider now that the radiosity on
patch i varies along one axis parallel to one edge of i, B(l) = lnB, where B is
constant and l, which is between 0 and 1, parametrizes the patch (Figure 6.1(b)).
The increase in mutual information when dividing patch i into sub-patches i1
and i2 is obtained from (5.42):

(∆I)r
ij = 2

BiBj

AT

(Ai1Fi1j log Fi1j + Ai2Fi2j log Fi2j −AiFij log Fij)

The maximum increase in mutual information is achieved when the patch i is
split perpendicular to the gradient (that is, across a line l = k). The optimal
value for l is found by optimising the expression:

ln+1 log
1

l
+ (1− ln+1) log

1− ln+1

1− ln+2

For n = 1, 2, 3, 4 the optimal values correspond to l = 0.48, 0.61, 0.68, 0.74.
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(a) (b) (c)

Figure 6.5: An empty cube with (a) optimal (IS = 1.3569), (b) regular (IS =
1.3331) and (c) “bad” (IS = 1.2554) subdivision.

Consider now the subdivision problem from the point of view of minimising
the MSE error on patch i, while assuming constant values for the radiosities
on the sub-patches (equal to the average of the continuous radiosity function
B(x)). After some algebra, it can be shown that the optimal solution satisfies:

2nln − ln−1 − . . .− l2 − l − 1 = 0

For n = 1, 2, 3, 4 the optimal values are l = 0.5, 0.64, 0.72, 0.77.
We have seen with this example that, in the absence of a form factor gradient,

the subdivision cuts along the radiosity gradient and the optimal value that
corresponds to maximum increase in mutual information is very near to the
minimum MSE error.

6.2 An Oracle Based on the Increase in Mutual

Information

In this section we present a theoretical analysis for an oracle based on the
increase in mutual information when a patch is refined.

It has been seen (section 5.4.4) that, in the case of constant radiosity, the
increase in mutual information is given by (5.42)

(∆I)r
ij = 2

BiBj

AT

((
m∑

k=1

Aik
Fikj log Fikj

)
−AiFij log Fij

)

Observe that this increase is strongly dependent on the subdivision type. To
avoid this dependence, we take the maximum possible increase for a regular
subdivision:

max((∆I)r
ij) =

2

AT

BiBj

((
Ai

m
mFij log(mFij)

)
−AiFij log Fij

)

=
2

AT

BiBjAiFij log m ∝ BiBjAiFij (6.3)

Thus, the quantity BiBjAiFij expresses the maximum potential gain of mutual
information between two patches when subdividing one of them. However, this
value can be rather different from the real gain obtained, when for instance
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the form factors are fairly equal in the subdivisions, as they may be with two
parallel patches at some distance and without occlusions (in this case there is
no gain). Thus, the use of this quantity as an oracle for subdividing is not
recommended. A better way is to use the full expression for ∆I , or at the
least some information on form factor gradients along subdivisions should be
taken into account (in general, the larger the gradient, the larger the increase
in mutual information).

One could also consider which patch has the highest potential gain in mutual
information with respect to all other patches. In this case we sum over j

∑

j

BiBjAiFij = AiBi

Bi −Ei

ρi

(6.4)

to find the one with the largest generalized area Ai (section 5.2). Thus, lacking
any other information, a heuristic method would be to subdivide the patch with
the largest generalized area.

To sum up, one proposal for an oracle for hierarchical radiosity subdivision
is as follows:

• A patch of the pair (i, j) will be a candidate for subdivision only when
the quantity BiBjAiFij > ε1. This discards subdivisions with a small
potential increment of mutual information.

• If a pair (i, j) is considered, choose one of them: the one corresponding to

max(AiBi

Bi −Ei

ρi

, AjBj

Bj − Ej

ρj

) (6.5)

that is, the one with the highest potential mutual information increase.

• A patch of the pair (i, j), say i, is finally subdivided only if the estimated
gradient in form factors between the subdivisions and j is larger than a
given threshold ε2. The intention here is to guarantee a real increase in
mutual information.

As a cheap gradient estimator, we could use the differences between point-to-
point form factors from the center of the subdivisions to the center of the j
patch.

We have to point out here that the first step in the oracle is analogous to the
power oracle ρiAiFijBj (2.48), the second step can be seen as an extension to
the heuristics of dividing the patch with the largest area, and the third step is
analogous to the various gradient oracles used in hierarchical radiosity literature
[9]. Obviously, the last step in the oracle can be refined to incorporate the exact
form of the mutual information function, but at a much higher cost due to the
numerical instabilities of the log function.

This oracle has two main drawbacks:

• It is based on a Markov chain whose stationary distribution and transition
probabilities are taken from a converged scene. However, this oracle should
be used on a hierarchical radiosity algorithm, where we do not have the
final radiosities of patches.

• The hypothetical maximum mutual information gain can be quite different
from the real increase obtained.
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We will present in section 6.4 an oracle based on discretisation error that
will overcome these disadvantages.

6.3 Loss of Information Transfer due to the Dis-

cretisation

To obtain a refinement criterion based on the discretisation error between two
patches, we need to consider both continuous and discrete patch-to-patch infor-
mation transfers. In this section we give the discretisation error for visibility
and radiosity.

6.3.1 Mutual Information Matrix

In order to represent visibility and radiosity in the same formula, we adopt a
general notation. So, IS represents IS or IS , Fij represents Fij or Fij , and ai

represents ai or ai in a consistent way. In the continuous case, Ic
S stands for I

c
S

or Ic
S .
So, in general, discrete scene mutual information is given by

IS =

np∑

i=1

np∑

j=1

aiFij log
(Fij

aj

)
(6.6)

From this formula, the term

Iij = aiFij log
(Fij

aj

)
(6.7)

can be considered as an element of a mutual information matrix, and it is easy
to see that Iij = Iji. Each element represents the information transfer between
patches i and j. Also, we can consider that

Ii =

np∑

j=1

aiFij log
(Fij

aj

)
(6.8)

expresses the information transfer from patch i. Thus, we can write

IS =

np∑

i=1

Ii =

np∑

i=1

np∑

j=1

Iij (6.9)

If we analyze the terms Iij , we observe that negative values appear when
Fij < aj . This situation reflects a very low interaction between the two patches
involved. On the other hand, using the concavity property of the logarithm
function (2.67), it is easy to see that Ii ≥ 0 (substituting ak, bk, and n by Fij ,
aj , and np, respectively).

The information transfer between two patches can be obtained more accu-
rately if we consider the continuous mutual information between them. Thus,
from the continuous mutual information for visibility and radiosity, we obtain:
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• For visibility

Continuous information transfer:

Ic
S =

∫

S

∫

S

1

AT

F (x, y) log(AT F (x, y))dAxdAy

=

np∑

i=1

np∑

j=1

∫

Ai

∫

Aj

1

AT

F (x, y) log(AT F (x, y))dAxdAy (6.10)

Continuous information transfer due to patch i:

Ic
i =

np∑

j=1

∫

Ai

∫

Aj

1

AT

F (x, y) log(AT F (x, y))dAxdAy (6.11)

Continuous information transfer between patches i and j:

Ic
ij =

∫

Ai

∫

Aj

1

AT

F (x, y) log(AT F (x, y))dAxdAy (6.12)

This continuous measure expresses with maximum precision the visibility
information transfer between two elements.

• For radiosity

Continuous information transfer:

I
c
S =

∫

S

∫

S

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy

=

np∑

i=1

np∑

j=1

∫

Ai

∫

Aj

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy

(6.13)

Continuous information transfer due to patch i:

I
c
i =

np∑

j=1

∫

Ai

∫

Aj

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy (6.14)

Continuous information transfer between patches i and j:

I
c
ij =

∫

Ai

∫

Aj

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy (6.15)

This continuous measure expresses with maximum precision the radiosity
information transfer between two elements.

6.3.2 Discretisation Error Between Two Patches

As we have seen (sections 4.4.2 and 5.3), a general discretisation error for a
scene can be given by

δ = Ic
S − IS ≥ 0 (6.16)

In order to propose a refinement oracle for hierarchical radiosity, we are in-
terested in the contribution to this discretisation error of the patch-to-patch
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interaction (i.e., discretisation error between two patches). So, we calculate,
respectively, the difference between continuous and discrete patch-to-patch mu-
tual information for visibility and radiosity. For each one, three different Monte
Carlo techniques can be used: patch-to-patch random lines, local lines and
global lines.

• For visibility

1. Patch-to-patch random lines: The computation of (6.12)

Ic
ij =

∫

Ai

∫

Aj

1

AT

F (x, y) log(AT F (x, y))dAxdAy

can be done with an area-to-area sampling (section 2.1.6), i.e., using
random lines joining both elements i and j (the pdf is 1

AiAj
). For

Nij lines, we have

Ic
ij ≈

AiAj

AT

1

Nij

Nij∑

k=1

F (xk, yk) log
(
F (xk, yk)AT

)
(6.17)

where xk and yk are, respectively, the end-points on patches i and j
of the k-th line.

From (6.7), Iij can be expressed as

Iij =
AiFij

AT

log
(FijAT

Aj

)
=

AiAj

AT

Fij

Aj

log
(Fij

Aj

AT

)
(6.18)

Now, taking
Fij

Aj
≈ 1

Nij

∑Nij

k=1 F (xk, yk) (2.34), we obtain the visibility

discretisation error between patches i and j:

δv
ij = Ic

ij − Iij

≈
AiAj

AT

(
1

Nij

(Nij∑

k=1

F (xk, yk) log
(
F (xk, yk)AT

))

−
Fij

Aj

log
(Fij

Aj

AT

))

=
AiAj

AT

(
1

Nij

(Nij∑

k=1

F (xk, yk) log(F (xk , yk))
)

−
Fij

Aj

log
(Fij

Aj

))

=
AiAj

AT

(
1

Nij

(Nij∑

k=1

F (xk, yk) log(F (xk , yk))
)

−
( 1

Nij

Nij∑

k=1

F (xk , yk)
)

log
( 1

Nij

Nij∑

k=1

F (xk , yk)
))

≥ 0

(6.19)

where we have used the log-sum inequality (2.67). This difference
gives us the discretisation error between two elements and it is used
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as the basis for our mutual-information-based (MI-based) oracle. Ob-
serve also that δv

ij is symmetric: δv
ij = δv

ji.

2. Local or global lines:

The computation of Ic
ij can also be done with uniformly distributed

local or global lines (section 2.1.6). From (6.15) and (4.8), we obtain

Ic
ij ≈

AiFij

AT

1

Nij

Nij∑

k=1

log(AT F (xk , yk)) (6.20)

where Nij is the number of local lines or segments of global lines
which connect patches i and j. Hence, we find

δv
ij = Ic

ij − Iij ≈
AiFij

AT

(
1

Nij

(Nij∑

k=1

log(F (xk , yk))
)
− log

Fij

Aj

)
(6.21)

As we expected, it is easy to see that the discretisation error between two
spherical patches is equal to zero.

• For radiosity

1. Patch-to-patch random lines:

The computation of

I
c
ij =

∫

Ai

∫

Aj

F (x, y)B(x)B(y)

Ac
T

log
A

c
T F (x, y)

Bin(x)Bin(y)
dAxdAy

can also be done with an area-to-area sampling. Assuming constant
approximations for the radiosity over the elements, we obtain for Nij

lines

I
c
ij ≈

AiAjBiBj

AT

1

Nij

Nij∑

k=1

F (xk, yk) log
(F (xk, yk)AT

Bin
i Bin

j

)
(6.22)

and from (6.7)

Iij =
AiAjBiBj

AT

Fij

Aj

log
(Fij

Aj

AT

Bin
i Bin

j

)
(6.23)

Now, taking
Fij

Aj
≈ 1

Nij

∑Nij

k=1 F (xk , yk) (2.34), we obtain the radiosity

discretisation error between patches i and j:

δr
ij = I

c
ij − Iij

≈
AiAjBiBj

AT

(
1

Nij

(Nij∑

k=1

F (xk , yk) log(F (xk , yk))
)

−
( 1

Nij

Nij∑

k=1

F (xk , yk)
)

log
( 1

Nij

Nij∑

k=1

F (xk , yk)
))

≥ 0

(6.24)

Observe that

δr
ij =

BiBjAT

AT

δv
ij (6.25)
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2. Local or global lines: The computation of I
c
ij can also be done

with uniformly distributed local or global lines (sections 2.1.6). From
(6.15) and (5.20), we obtain

I
c
ij ≈

AiFijBiBj

AT

1

Nij

Nij∑

k=1

log

(
AT F (xk , yk)

Bin
i Bin

j

)
(6.26)

Hence, we find

δr
ij = I

c
ij − Iij ≈

AiFijBiBj

AT

(
1

Nij

(Nij∑

k=1

log(F (xk , yk))
)
− log

Fij

Aj

)

(6.27)

6.4 Kernel-Smoothness-Based Oracle for Hier-

archical Radiosity

We introduce in this section an information-theory oracle based on the radiosity
kernel smoothness to be used in the hierarchical refinement algorithm. As the
refinement strategy in hierarchical radiosity deals with one pair of elements
at a time, we have to look for a similar interaction in our information theory
framework.

The fundamental idea in our approach is the following: the difference be-
tween continuous and discrete patch-to-patch (or element-to-element) mutual
information, i.e., discretisation error, gives us the loss of information transfer
or the maximum potential gain of information transfer between two elements.
Hence this difference can be interpreted as the benefit to be gained by refining
and can be used as a decision criterion.

Unlike the first oracle proposed in section 6.2, this oracle is based on a nearly
exact evaluation of the maximum potential gain in mutual information.

6.4.1 An Oracle Based on the Discretisation Error be-

tween Two Patches

A natural choice for a mutual-information-based oracle would be to use the
radiosity discretisation error δr

ij (6.24):

δr
ij = I

c
ij − Iij

≈
AiAjBiBj

AT

(
1

Nij

(Nij∑

k=1

F (xk , yk) log(F (xk , yk))
)

−
( 1

Nij

Nij∑

k=1

F (xk , yk)
)

log
( 1

Nij

Nij∑

k=1

F (xk , yk)
))

≥ 0

But this error expresses the information transfer loss in a converged scene
whereas we are interested in an oracle which will be incorporated into a hi-
erarchical radiosity algorithm. Note also that, at the beginning of the radiosity
computation, most of the receiver Bi values are zero. However, a δr

ij oracle
could be used with a nearly converged scene.
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Thus, we take a different approach, similar to the classic smoothness-based
oracles, which multiplies ρiBj (from the radiosity equation (2.6)) by an expres-
sion of the visibility gradient between the two patches involved. In our case, the
visibility gradient is given by the discretisation error δv

ij = Ic
ij − Iij , which also

represents the variation of the radiosity kernel.
Our oracle will be based on the following considerations:

• In the radiosity equation (2.6)

Bi = Ei + ρi

np∑

j=1

FijBj

the contribution of patch j to the radiosity of patch i is given by ρiFijBj .
Thus, the geometric factor, i.e., the radiosity kernel, is weighted by ρiBj .

• The kernel-smoothness-based oracles reviewed in section 2.1.12, such as

ρi(F
max
ij − F min

ij )AjBj < ε

and
ρimax(F max

ij − F av
ij , F av

ij − F min
ij )AjBj < ε

, try to capture the variation of the radiosity kernel using the maximum
and minimum kernel values.

Our oracle proposal takes these two facts on board, weighting the variation of
the radiosity kernel (expressed by the visibility discretisation error δv

ij between
two patches) by ρiBj . So, we find that the mutual-information-based (MI-based)
oracle is given by

ρiδ
v
ijBj < ε (6.29)

which can be computed with Nij element-to-element random lines between el-
ements i and j:

ρiAiAjBj

AT

(
1

Nij

(Nij∑

k=1

F (xk , yk) log(F (xk, yk))
)

−
( 1

Nij

Nij∑

k=1

F (xk , yk)
)

log
( 1

Nij

Nij∑

k=1

F (xk , yk)
))

< ε (6.30)

Note that the differences between (6.24) and (6.30) are that AT is substituted
by AT and Bi is substituted by ρi. Observe that in this expression the receiver
area appears weighting the oracle and thus avoiding an excessively small receiver
subdivision.

It is important to note that δv
ij can be used as an oracle for visibility. This

only takes into account the variation of the radiosity kernel and the areas of the
patches involved.
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6.4.2 Empirical Results

To check the performance of the MI-based oracle, we have implemented a power-
based oracle (2.48), a classic kernel-smoothness-based (KS-based) oracle (2.50)
and our MI-based oracle (6.30) in the hierarchical Monte Carlo radiosity [5]
method of the RenderPark[14] system (www.renderpark.be). It should be noted
that our oracle can be used with any hierarchical radiosity method.

(a.I) Power-based (b.I) KS-based (c.I) MI-based

(a.II) Power-based (b.II) KS-based (c.II) MI-based

(a.III) Power-based (b.III) KS-based (c.III) MI-based

Figure 6.6: Power-based (a), KS-based (b) and MI-based (c) methods with the
Cornell box scene. A coarse mesh is shown in (I) with 1051 (a.I), 1039 (b.I),
and 1047 (c.I) patches, with 19472 rays for the radiosity computation. A fine
mesh is shown in (II) with 1979 (a.II), 1955 (b.II), and 1995 (c.II) patches, with
116780 rays for the radiosity computation. The Gouraud shaded solution for
(II) is shown in (III). For images (b) and (c), 10 rays are cast for each oracle
evaluation.

In our experiments, we use two scenes: the Cornell box (Figures 6.6 and 6.9)
and the cube room (Figures 6.7, 6.8 and 6.10). Six different discretisations were
generated for the Cornell box: three coarse (Figure 6.6I) and three finer ones
(Figure 6.6II). These discretisations have been obtained from three meshing
strategies based, respectively, on transported power (2.48) (Figures 6.6a.I and
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6.6a.II), classic kernel smoothness (2.50) (Figures 6.6b.I and 6.6b.II), and mutual
information (6.30) (Figures 6.6c.I and 6.6c.II). In a similar way, we compared
our strategy with the KS-based strategy using two different views of the cube
room scene (Figures 6.7 and 6.8). Both KS-based and MI-based oracles were
evaluated for each discretisation decision with 10 element-to-element random
lines (except in Figures 6.9 and 6.10, where only 4 rays were used). For the
power-based oracle we used a cheap form factor estimate (see section 2.1.12).

(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 6.7: KS-based (a) and MI-based (b) methods with the cube room scene
showing the mesh (I) and Gouraud shaded solution (II). The number of patches
is 13902 and 13878, respectively. For each scene, we cast 402650 rays for radios-
ity computation and 10 rays for each oracle evaluation.

In Figures 6.6I and 6.6II we see the behaviour of the three oracles for two
different levels of discretisation. Using the power-based and KS-based oracles,
the shadow of the small cube gets an accurate representation only at the finer
level of discretisation, whereas the MI-based oracle already produces a good
representation in the coarse mesh. The power-based oracle overdiscretises the
rear wall and the top of the prism, as expected, while the smoothness-based
oracles correct this effect. However, the MI-based oracle supports the change
from a coarse to a finer mesh much better (see again the rear wall).

Figures 6.7 and 6.8 show the behaviour of the classic KS-based and MI-
based oracle for the cube room scene. Observe the accurate representation
of the shadow of the chair near the right wall (Figure 6.7b) and front wall
(Figure 6.8b) obtained by the MI-based oracle. Observe also the much better
discrimination in the mesh, seen for instance on the floor and walls, and how
the shadows on the table are represented more accurately in Figure 6.8b.
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(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 6.8: A different view of the scene shown in Figure 6.7.

(a) KS-based (b) MI-based (c) MI-based

Figure 6.9: KS-based (a) and MI-based (b) methods with the Cornell box scene
showing the mesh. The number of patches is 875 and 891, respectively. For
each scene, we cast 19458 rays for radiosity computation and 4 rays for each
oracle evaluation. The Gouraud shaded solution for (b) is shown in (c).
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In Figures 6.9 and 6.10, the robustness of the classic KS-based and MI-
based oracle are tested against a decrease from 10 to 4 point-to-point form
factor computations for each oracle evaluation. The performance of the classic
KS-based oracle degenerates to a degree similar to the power-based oracle, see
for instance the rear wall in Figure 6.9a (compare with Figures 6.6b.I) and the
same happens in Figure 6.10a (compare with Figures 6.7a). On the other hand,
the MI-based oracle maintains most of its good performance (compare Figure
6.9b with Figures 6.6c.II). See also the shadow of the chair near the right wall
in Figures 6.10b and 6.7b.

(a.I) KS-based (b.I) MI-based

(a.II) KS-based (b.II) MI-based

Figure 6.10: KS-based (a) and MI-based (b) methods with the cube room scene
showing the mesh (I) and Gouraud shaded solution (II). The number of patches
is 13690 and 13758, respectively. For each scene, we cast 402565 rays for radios-
ity computation and 4 rays for each oracle evaluation.

In Figure 6.11 we show a more accurate solution computed with the MI-
based oracle, 10 element-to-element random lines for each oracle evaluation and
2684260 rays for radiosity computation.

6.5 Scene Discretisation in Flatland

In this section, the relationship between mutual information, entropy, and dis-
cretisation is studied in flatland. A discretisation algorithm based on the mini-
mization of the difference Ic

S − IS will also be introduced.
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(a) (b)

(c) (d)

Figure 6.11: MI-based method with the scene shown in Figure 6.7. The number
of patches is 18338. We cast 2684260 rays for radiosity computation and 10 rays
for each oracle evaluation.

6.5.1 Mutual Information Matrix and Discretisation

In this section, a simple discretisation of an equilateral triangle is used to show
the behaviour of IS and HS with respect to the discretisation.

Starting from a regular discretization of an equilateral triangle with six
patches (Figure 6.12a), we subdivide symmetrically each patch into two parts
and we analyse the behaviour of IS and HS with respect to the cutting point.
As we can observe (Figure 6.12c) the maximum value for IS is obtained when
we cut at point P , at a distance of 15.6% from the vertex (Figure 6.12b), and
HS has the maximum value at point S. Obviously, HP reaches the maximum
(point T ) with a regular discretisation.

If instead of two divisions we make three, the maximum for IS is obtained
with the discretisation shown in Figure 6.13a. Mutual information, entropy,
computational error E(MSE), and relative discretisation error (4.11) of the
two discretisations (optimal and regular) of Figure 6.13 can be seen in Table
6.1. In the optimal case, the discretisation error is the lowest and so are the
entropy and the computational error.

Similarly to section 6.3.1, we can consider that the terms

Iij = liFij log
Fij

lj
(6.31)

correspond to a symmetric mutual information matrix (Iij = Iji), where each
term represents the exchange (or transfer) of information between the patches
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(a) (b)
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(c)

Figure 6.12: (a) Subdivision of an equilateral triangle. (b) Maximum IS . (c)
Points P and S indicate, respectively, the discretisation with maximum IS and
maximum HS . The horizontal axis represents the distance from the cutting
point to the vertex in percentage terms.

(a) (b)

Figure 6.13: (a) Optimal and (b) regular discretisations.

scene a b
discretisation optimal regular

Ic
s 1.285 1.285

Is 1.137 1.097
Hs 2.896 3.073
Hj 6.929 7.243

E(MSE) 14 15

δ
v

in % 11.52 14.63

Table 6.1: Values corresponding to the discretisations of Figure 6.13.
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i and j. Also, the information transfer carried out by patch i is given by

Ii = li

np∑

j=1

Fij log
Fij

lj
≥ 0 (6.32)

Thus, we have

IS =

np∑

i=1

Ii =

np∑

i=1

np∑

j=1

Iij ≥ 0 (6.33)

Figures 6.14a-b (gray scaled maps where the darkest color corresponds to
the highest values of Iij) show the transfer of information between the patches
on two sides of the triangles of Figure 6.13. Clearly, the maximum values are
reached near the vertexes.

(a) (b)

Figure 6.14: (a,b) show the transfer of information between two sides of the
triangles in Figures 6.13a and 6.13b respectively. The darkest colour indicates
the highest value.

As we have seen in section 4.2, continuous mutual information Ic
S can be

computed approximately by casting uniformly distributed global lines, and the
average of the terms

log(
LT cosθxcosθy

2rxy

) (6.34)

represents the information transport in a scene. From this point of view, we can
define, in analogous form, the terms

Ic
ij = Ic

ji '
1

2N

Nij∑

k=1

log(
LT cos θxk

cos θyk

2d(xk , yk)
) ∀i 6= j (6.35)

Ic
ii ≈

1

N

Nii∑

k=1

log(
LT cos θxk

cos θyk

2d(xk, yk)
) (6.36)

where N is the total number of pairs of points considered, i and j are two
patches of a scene, and Nij is the number of pairs of points which connect the
patches i and j. Thus Ic

ij expresses the continuous information transfer between
patches i and j.
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We can also define the contribution of a patch i to the global complexity I c
S

as

Ic
i =

np∑

j=1

Ic
ij (6.37)

This can be interpreted as the total information transferred by patch i.
Thus,

Ic
S =

np∑

i=1

Ic
i =

np∑

i=1

np∑

j=1

Ic
ij (6.38)

6.5.2 An Oracle Based on the Discretisation Error of a

Patch

Finally, we introduce a refinement criterion based on the difference between I c
i

and Ii for each patch. This difference represents the discretisation error (DE) of
patch i. Thus, as the objective is to reduce this as quickly as possible in order to
obtain the maximum information transfer with the minimum number of patches,
the algorithm proceeds by subdividing, into two equal parts, the patch that has
the maximum loss, i.e., the maximum potential gain. This algorithm ends with
a given discretisation accuracy or a given number of patches.

In the following experiments, this refinement criterion (DE-based oracle) is
contrasted with another which divides, at each step, the patch with maximum
information transfer Ii (“power-based” oracle).

In Figures 6.15 (scene I) and 6.16 (scene II) we can see that the discretisation
obtained with the DE-based oracle is finer at the corners and narrow spaces,
and in general at the regions with a higher transfer of information. On the other
hand, the discretisation obtained with the power-based oracle (Figures 6.17 and
6.18) is more uniform.

(I.a) (I.b) (I.c) (I.d)

Figure 6.15: Four different discretisations for scene I obtained with the DE-
based oracle: (a) 26, (b) 52, (c) 104 and (d) 208 patches respectively.

In Table 6.2, we compare three different discretisations of 208 patches (reg-
ular, power-based, and DE-based) for the scenes in Figures 6.15 and 6.17 (scene
I) and 6.16 and 6.18 (scene II), and in Figure 6.19 we show the evolution of
IS and HJ with respect to the number of patches for the scene II. We can see
that the best results are obtained with the DE-based oracle: the discretisation
error is the lowest and so is the entropy. This fact is also important as entropy
is directly related to computational error. In conclusion, the DE-based oracle
shows good behaviour by reducing both errors.
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(II.a) (II.b) (II.c) (II.d)

Figure 6.16: Four different discretisations for scene II obtained with the DE-
based oracle: (a) 26, (b) 52, (c) 104 and (d) 208 patches respectively.

(I.a) (I.b) (I.c) (I.d)

Figure 6.17: Four different discretisations for scene I obtained with the power-
based oracle: (a) 26, (b) 52, (c) 104 and (d) 208 patches respectively.

(II.a) (II.b) (II.c) (II.d)

Figure 6.18: Four different discretisations for scene II obtained with the power-
based oracle: (a) 26, (b) 52, (c) 104 and (d) 208 patches respectively.

scene algorithm Ic
S IS HS HJ E(MSE) δ

v
(%)

regular 2.492 5.208 12.908 68 1.07
I power-based 2.519 2.490 5.220 12.930 68 1.15

DE-based 2.496 4.715 11.926 67 0.90

regular 3.173 4.530 12.233 63 2.21
II power-based 3.245 3.185 4.280 11.745 62 1.84

DE-based 3.195 3.899 10.993 61 1.54

Table 6.2: Values obtained for three different discretisations (regular, power-
based, DE-based), with 208 patches, corresponding to scenes I and II.
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(a) (b)

Figure 6.19: Evolution of (a) IS and (b) HJ of scene II with respect to the num-
ber of patches and three different discretizations: regular, power-based (power)
and DE-based (smooth).

6.6 Summary

The assumption that, between different discretisations of the same scene, the
most precise will be the one that has the minimum loss of information transfer is
fundamental in dealing with the accuracy of the discretisation and in introducing
some criteria of refinement applied to visibility and radiosity. In consequence,
in this chapter, refinement has been driven by the criterion of maximizing the
discrete mutual information.

Discrete and continuous mutual information can be seen as matrices where
each element represents the exchange (or transfer) of information between two
patches. The sum of a row of this matrix represents the information transferred
by a patch.

Our experiments have illustrated the behaviour of mutual information when
one or more patches are refined. First, we theoretically analyzed an oracle for
hierarchical radiosity refinement based on the increase in mutual information
when a patch is subdivided has been theoretically analyzed. The drawbacks of
this method were overcome by an oracle based on the discretisation error.

We presented two different oracles based on the discretisation error:

• The first one is based on the discretisation error between two patches (for
hierarchical radiosity)

The discretisation error between two patches is used to decide the necessity
of refinement. This oracle was compared with a kernel-smoothness-based
oracle and a power-based oracle.

• The second one is based on the discretisation error on a patch (for visibility
in flatland)

As the objective was to reduce the discretisation error as quickly as pos-
sible in order to obtain the maximum information transfer with the mini-
mum number of patches, the algorithm proceeds by subdividing (into two
equal parts) the patch that has the maximum loss of information transfer,
i.e., the maximum potential information gain. The results obtained with
this oracle were contrasted with another one which is based simply on the
value of the information transferred by each patch.



Chapter 7

Conclusions and Future

Work

We present here the conclusions and the main contributions of this thesis, and
also some directions for future research.

7.1 Conclusions

In this thesis, we have studied the complexity of a scene and new criteria of
refinement in the visibility and radiosity settings from an information-theory
point of view. Below, we review the principal concepts developed and results
obtained in this dissertation:

• In chapter 3, a new way of looking at the visibility of a scene was developed
from an information-theory point of view. Hence, a scene was interpreted
as a communication channel.

Beginning with this assumption, the most essential discrete information-
theory measures, like entropy and mutual information, were defined in
the visibility setting, and their properties analysed. In short, we show
that scene entropy represents both randomness and unpredictability in a
scene, and mutual information expresses both correlation and dependence
between the different parts of a scene. From different experiments, we
demonstrated that scene entropy and mutual information show a comple-
mentary behaviour.

Entropy was also reinterpreted from the perspective of the local and global
lines. We found that the uncertainty of a global line segment is at least
twice the uncertainty of a local line. A close relationship between scene
entropy and the variance of the form factor estimators was demonstrated:
the bigger the entropy, the bigger the error in form factor computation.
This means that, for a given error, we need to cast more lines for a scene
with more entropy.

• In chapter 4, we analyzed the notion of scene complexity. After that,
continuous scene mutual information, which expresses with maximum ac-
curacy the information transfer in a scene, was proposed as the scene vis-

118
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ibility complexity, and discrete scene mutual information as the visibility
complexity of a discretised scene.

The continuous mutual information integral was solved by Monte Carlo in-
tegration, and the computation was done by casting uniformly distributed
global or local lines. We showed that two fundamental properties are ful-
filled in a scene:

– If any patch is divided into several subpatches, discrete mutual in-
formation increases or remains the same.

– Continuous scene visibility mutual information is the least upper
bound to the discrete scene visibility mutual information.

We also saw that scene complexity, which measures the degree of correla-
tion or dependence in a scene, also quantifies the difficulty in obtaining a
precise discretisation, i.e., the higher the scene complexity the more dif-
ficult it is to obtain an accurate discretisation and probably more refine-
ments will be necessary. The difference between continuous and discrete
mutual information was interpreted as a global discretisation error and
represents the loss of information transfer due to the discretisation.

Finally, the main reasons for the growth in complexity were described and
a tentative scene classification was proposed in flatland.

• In chapter 5, our previous results were extended to the radiosity setting.
To achieve this aim, we used an analog of the form factor matrix for the
radiosity setting: the null variance probability transition matrix. Thus,
both entropy and complexity of a scene with illumination, were defined
by using a different pair of discrete and continuous Markov chains. A set
of experiments demonstrated the feasibility of this approach.

Similarly to the visibility case, continuous scene radiosity mutual infor-
mation was interpreted as the difficulty in obtaining an accurate meshing.
The mutual information integral was also solved by Monte Carlo integra-
tion, taking an approximate solution for the radiosity. A general propo-
sition for visibility, radiosity, and importance enabled us to calculate the
gain in mutual information resulting from refinement.

• In chapter 6, a mutual-information-based refinement criteria for hierarchi-
cal radiosity was introduced. As we saw in the previous chapters, from an
information-theory point of view, the most accurate discretisation corre-
sponds to the one with maximum discrete mutual information. Thus, our
objective was to reduce the information transfer loss, i.e. the discretisation
error.

First, we demonstrated with different experiments that the objective of
maximizing the discrete mutual information can lead us towards an opti-
mal discretisation. After that, we analyzed, theoretically, a possible oracle
based on the increase in mutual information when a patch is refined.

Second, the discretisation error between two patches or elements was de-
fined in the visibility and radiosity settings as the difference between con-
tinuous and discrete element-to-element mutual information. Then, we
introduced a new smoothness-based refinement oracle for hierarchical ra-
diosity based on this discretisation error. This oracle was then compared
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with two classic refinement oracles based on transported power and kernel
smoothness using a hierarchical Monte Carlo radiosity implementation.
Experiments suggested that it is an improvement on previous oracles in
that, at equal cost, it produces a better discretisation and also needs less
visibility computations for a similar image quality.

Third, an oracle based on the information transfer loss of a patch has
been introduced for the visibility in flatland. The algorithm proceeds by
subdividing the patch that has the maximum loss of information transfer,
i.e., the maximum potential information gain.

7.2 Main Contributions

The principal contributions of this thesis are described below. We also indicate
the papers related to each contribution.

• The interpretation of a scene as an information channel, i.e., a system
which contains and transfers information. With this assumption, the scene
can be studied using information theory tools. [17, 21]

• Scene complexity definitions. Entropy and mutual information capture
different but complementary aspects of the complexity of a scene. On
the one hand, entropy measures the degree of randomness of a random
walk in a scene and also the uncertainty in the form factor computation
(using uniformly distributed random lines). On the other hand, mutual
information quantifies the degree of structure or correlation of a scene, i.e.,
just how complicated the interrelations are between the different parts
of a scene, and it is interpreted as the difficulty of obtaining a precise
discretisation. In general, these measures express the difficulty in dealing
with a scene. [23, 21]

• Mutual information, which also measures the information transfer in a
scene, is used to obtain new refinement criteria. Our refinement oracles
are based on the difference between continuous and discrete mutual in-
formation. This difference expresses the loss of information transfer due
to the dicretisation and can be interpreted as the benefit to be gained by
refining. Thus, among different discretisations of the same scene, the most
accurate is the one with the highest discrete mutual information, i.e., the
minimum loss of information transfer. [22, 25, 24]

• The work started in this thesis has paved the way for additional research
and applications in areas such as pixel supersampling [65, 69, 68] and
viewpoint selection [89, 91, 92].

7.3 Future Research

• The procedures presented in this thesis can be extended to the interior
points of a scene and to the points in the environment. To achieve this
objective, we can define, respectively, the entropy and mutual information
fields and the entropy and mutual information densities. Point measures
can be applied to
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– Studying the complexity of an interior region of a scene [66] and
defining the animation complexity [67].

The complexity of animation can be defined from the complexity
at the interior points of a scene. Using a physical analogy, we can
compute the work done in a particular animation.

– Pixel adaptive supersampling [65, 69, 68].

Two different information-theory contrast measures can be used in
the recursive refinement. The first one is based on entropy, which
measures the homogeneity of a pixel. And the second one is based
on the difference between continuous and discrete mutual information
field, which measures the distance to the ideal representation.

– Defining a new refinement criterion for hierarchical radiosity.

A new oracle based on the smoothness of the received radiosity can be
introduced from the mutual information density at a point. The dif-
ference between continuous and discrete mutual information density
will give us a measure of the discretisation error at a point.

• The concept of entropy can also be applied to the selection of good view-
points with applications in areas such as image-based rendering, molecular
visualization, and automatic exploration [90, 89, 91, 92].

A method which automatically computes the goodness of a viewpoint in
a scene has been introduced. This method obtains good views that can
be used for image-based modeling, scene understanding, etc.

• Other aspects to be analyzed are listed below:

– The definition of scene complexity can also be extended to non dif-
fuse environments. A non-diffuse scene can be modeled by a 2-order
Markov chain. Therefore, a statistical complexity measure like ex-
cess entropy can be used to quantify the complexity of a non-diffuse
scene.

– The behaviour of the long-range mutual information, i.e. the corre-
lation after n rebounds of a ray, can be inspected in a scene. This
can clearly show us what parts of a scene need more work.

– Mutual information could also be used to simplify the mesh. Thus,
a set of patches can be clustered if the loss of information transfer is
sufficiently small.

– A theoretical relationship between scene entropy and the variance of
the form factor estimates will be investigated further.

7.4 Publications

• Publications that support the contents of this thesis:

1. E. del Acebo, M. Feixas and M. Sbert. Form Factors and Information
Theory. Proceedings of the 3rd International Conference on Com-
puter Graphics and Artificial Intelligence (3IA’98), Limoges, France,
1998.
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2. M. Feixas, E. del Acebo and M. Sbert. Entropy of Scene Visibil-
ity. Proceedings of Winter School on Computer Graphics and CAD
Systems’99 (WSCG’99), Plzen, Czech Republic, 1999.

3. M. Feixas, E. del Acebo, Ph. Bekaert and M. Sbert. An Information
Theory Framework for the Analysis of Scene Complexity. Computer
Graphics Forum (Proceedings of Eurographics’99), 18(3): 95–106, Mi-
lan, Italy, 1999. This paper obtained an honourable mention in EG’99
conference.

4. M. Feixas, E. del Acebo, Ph. Bekaert and M. Sbert. Informa-
tion Theory Tools for Scene Discretisation. Rendering Techniques’99
(Proceedings of the 10th Eurographics Workshop on Rendering), pa-
ges 95–106, Granada, Spain, 1999.

5. M. Feixas, J. Rigau and M. Sbert. Scene Visibility Complexity and
Discretisation in Flatland. Institut d’Informàtica i Aplicacions, Uni-
versitat de Girona, Girona, Spain, 2002. Technical Report, IIiA–02–
12–RR.

6. M. Feixas, J.Rigau, Ph.Bekaert and M. Sbert. Information–Theoretic
Oracle Based on Kernel Smoothness for Hierarchical Radiosity. Short
Presentations of Eurographics’02, pages 325–333, Saarbrücken, Ger-
many, 2002.

• Additional publications:

1. J. Rigau, M. Feixas and M. Sbert. Visibility Complexity of a Region
in Flatland. Short Presentations of Eurographics’00, p. 159–163,
Interlaken, Switzerland, 2000.

2. J. Rigau, M. Feixas and M. Sbert. Information Theory Point Mea-
sures in a Scene. Institut d’Informàtica i Aplicacions, Universitat de
Girona, Girona, Spain, 2000. Technical Report, IIiA–00–08–RR.

3. J. Rigau, M. Feixas and M. Sbert. Visibility Complexity of Anima-
tion in Flatland. Proceedings of Winter School on Computer Graph-
ics and CAD Systems’01, Plzen, Czech Republic, 2001.

4. J. Rigau, M. Feixas and M. Sbert. View-Dependent Information
Theory Measures for Pixel Sampling and Scene Discretisation in Flat-
land. Proceedings of Spring Conference on Computer Graphics’01
(SCCG’01), p. 231–238, Budmerice, Slovak Republic, 2001.

5. J. Rigau, M. Feixas and M. Sbert. New Contrast Measures for Pixel
Supersampling. Advances in Modeling, Animation and Rendering
(Proceedings of CGI’02), p. 439–451, Bradford, UK, 2002.

6. J. Rigau, M. Feixas and M. Sbert. Entropy-Based Adaptive Su-
persampling. Poster Papers Proceedings of the 13th Eurographics
Workshop on Rendering, p. 63–70, Pisa, Italy, 2002.

7. P.P. Vázquez, M. Feixas, M. Sbert and W. Heidrich. Viewpoint
Selection using Viewpoint Entropy. Proceedings of Vision, Modeling,
and Visualization 2001, Stuttgart, Germany, 2001.
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Modeling Using Viewpoint Entropy. Advances in Modeling, Anima-
tion and Rendering (Proceedings of CGI’02), p. 267–279, Bradford,
UK, 2002.

9. P.P. Vázquez, M. Feixas, M. Sbert and A.Llobet. A New Tool for
Obtaining Good Views for Molecules. Proceedings of VisSym’02
(Eurographics-IEEE TCVG Symposium on Visualization), Barcelona,
Spain, 2002.

10. F. Castro, M. Feixas and M. Sbert. Fuzzy Random Walk. Advances
in Modeling, Animation and Rendering (Proceedings of CGI’02), p.
389–396, Bradford, UK, 2002.

11. M. Sbert, M. Feixas, J. Rigau, F. Castro and P.P. Vázquez. Appli-
cations of Information Theory to Computer Graphics. Proceedings
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d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain, 2001.

[91] P. P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Image-Based Mod-
eling Using Viewpoint Entropy, pages 267–279. Springer-Verlag London
Limited, London, UK, July 2002. Proceedings of CGI’02, Bradford, UK.

[92] P. P. Vázquez, M. Feixas, M. Sbert, and A. Llobet. A new tool for ob-
taining good views for molecules. In D. Ebert, P. Brunet, and I. Navazo,
editors, Proceedings of VisSym’02 (Eurographics-IEEE TCVG Symposium
on Visualization), pages 0–1, May 2002. Held in Barcelona, Spain.
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